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Abstract

Tweets related to cryptocurrency provide a complex problem space to explore
few-shot classification techniques on real world data. In this project, I explore meta
learning and cloze questions as two methods towards making good predictions on
small amounts of data.

1 Introduction

Few-shot classification is a problem of great interest because it allows models to be trained on very
little classified data. Data classification is a long, arduous, and expensive task. Many solutions to
few-shot, and even zero-shot, classification task have been proposed the last few years. In this project,
I take aspects of two different approaches—meta-learning and Pattern-Exploitative Training—and
attempt to classify real-world cryptocurrency twitter data.

Cryptocurrency was selected as the subdomain of tweets for a number of reasons. First, there is a
high amount of spam associated with cryptocurrency on Twitter. Likewise, there is high prevalence
of scam phishing taking place on daily basis. Third, several subjects fall under cryptocurrency, from
blockchain concepts to individual coins to the entire world of NFTs which has arisen in recent years.
Finally, there are myriad firmly held beliefs about cryptocurrencies, ranging from outright vitriol
to religious fervor. Cryptocurrency tweets comprise a complex problem space which can be sliced
in several ways. It is not uncommon, for example, for a single tweet of less than 20 words to have
negative sentiment about one currency while praising another. Therefore, cryptocurrencies tweets
present a rich landscape for NLP research and models.

I had two main goals in this project. The primary goal was to gain experience and learn the process of
collection, classifying, and preparing a dataset for machine learning. The secondary goal is to create
a neural network that could differentiate spam cryptocurrency tweets from other cryptocurrency
tweets. In pursuit of these goals, I discovered the problem of few-shot learning and several proposed
solutions to the problem.

2 Related works

In researching this project, I studied many approaches, a few of which I will mention here. An
exciting approach was proposed recently by [Kim et al.| [2022] called Lexicon Guided Self Training.
This approach trains on the labeled set to create a lexicon for each class. This lexicon is used to
generate pseudo labels for unlabeled data and provide a scheme to calculate a confidence level for
each generated label. Ultimately, this approach requires large teacher/student models and I did not
have the resources to continue. However, work done while researching this approach became useful
when analyzing my models.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



A big influence on the choices I made came by Hsu et al.|[2018]] and [Lison et al.|[2021]]. The former
introduced me to meta-learning objectives and tasks, which is how I built the pre-training pipeline as
described in Section[4.2] The latter describes skweak, a weak classification library for python. While
I did not directly use this library, the heuristic labelling techniques described in their paper informed
me on how to make my own secondary labels when building tasks for my own meta training tasks.

Pattern-Exploitative Training was proposed recently by [Schick and Schiitze [2020]. While I did not
implement their entire paper, I use their concept of using cloze questions to reframe classification
tasks as NLP problems. This approach is presented in detail in Section[4.3]

3 Dataset design

3.1 Data discovery and collection

I collected cryptocurrency tweets over the course of April 15th - 24th, 2022. The code for the data
pipeline can be found at https://gitlab.com/dhuck/arexion. Tweets were collected using the
tweepy package alternating between two different methods. The first method filtered incoming tweets
by supplying related keywords to the Twitter API. These keywords were all related to cryptocurrency
and specified by the Author. The second method relied on filtering by usernames of Twitter users
identified as cryptocurrency influencers. The process of discovery of these usernames was done
partially by the author and Eli Good, who also significantly helped during classification. These
methods alternated between set intervals throughout the time of collection.

Large amounts of the incoming data were repeat messages. With the goal of providing as diverse
of a dataset as possible, I applied several heuristics to limit which tweets were added to the dataset.
First, retweets were not allowed in the database by checking for the retweeted_status in the APT’s
response and the phrase ‘rt @’ in the tweet text. Second, I created an ignore list, which employed
simple regex substring matching to remove common messages. Some examples of ignored messages
are ‘price alert!’, ‘complete the puzzle’, or “#coinhunterworld’. This removed a number of tweets
that were generated by bots or people playing NFT-based games. The cleaning process removed all
hashtags and user mentions. A simple query was run at regular intervals to remove all duplicates
using full string matching on the cleaned text. To be removed from the database, a cleaned tweet
needed to be present at least 5 times in the database as a means to keep the duplicate removal process
from being too aggressive. During peak times, this last heuristic could remove up to 500 tweets every
minute. The reason of this mass removal was to limit certain tweets from becoming overwhelmingly
represented in the database.

Over the course of the collection time frame, roughly 2.3 million tweets were collected and stored.

3.2 Data labelling

To label the data, a simple web application was built to display a tweet and prompt a user to classify
individual tweets as one of six classes. The class choices are spam, scam, positive, neutral, negative,
or off-topic. While the primary goal was to detect spam, I wanted to explore performing sentiment
analysis on non-spam tweets. Furthermore, within a day of classifying, it became apparent that many
tweets were off-topic, presenting a tertiary classification. The web application can be viewed at
http://vaporwav.in, and I urge the reader to help classify some more tweets at their leisure. By
the time training and model development began in earnest, only 3,600 tweets had been classified.
While classification was open to many people, the majority of classification was done by myself and
Eli Good, as mentioned above.

3.3 Training and test data

Both the labeled and unlabeled training data are available for download using an API in the provided
notebooks. When using the labeled data, at least 10% of the data is kept back as test data. This is
done at runtime in the notebooks. To prevent models from seeing training data in any of the test
data, all saved and loaded checkpoints are from pre-training or objectives on the unlabeled data.
Depending on the training set, the test data may end up being a significant portion of the labeled data.
It is traditional in few-shot classification problems to benchmark using only n examples of each class,
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Figure 1: Histogram of tweet lengths. Almost all of the tweets are less than 60 words long, keeping
token strings short.
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where n is typically less than 50. In these cases, the remainder of the training data is kept as the test
set.

Across both the labeled and unlabeled sets, I removed all user mentions. The reason for this was
two-fold. First, user mentions are not counted against tweet length, so tweets belonging in reply
streams may have dozens of user mentions but only a few words of meaningful text. Second, I did not
want to encourage the model to attach classifications to any one user. For example, a certain prominent
billionaire’s username is popular in throughout the dataset, and over exposure to this handle, among
others, could influence the model in bad ways. Additionally, it is my opinion usernames should be
stripped from this data for privacy concerns.

Since I am using BERT-based transformers as the root of the model, most of the word tokenization is
handled by huggingface PretrainedTokenizers. Early experiments and analysis showed this to
not work as well as I had hoped. As a result, I created a vocabulary file with all words and emoji
which occur more than 500 times in the dataset. This resulted in better performance in the baseline
and more meaningful analysis when investigating output attentions.

Figure[I]shows the distribution of tweet lengths. The vast majority of tweets are less than 40 words
long. For data alignment reason, I chose a max length of 64, which captures all but the long tail of
tweets. Originally, I was using the longest tweet as my maximum length for tokenization. Switching
to 64 words per token string improved training times significantly.

3.4 Unlabeled data

Unlabeled data is used in pre-training objectives depending on the models as described in Sections

H2 and £3]

4 Models

Few-shot classification is a problem with an intense amount of research currently underway. Many of
the approaches I investigated were beyond my reach due to a lack of computational and time resources.
Models which could be trained on available hardware took a long time and made iteration difficult.
As aresult, I investigated two approaches to the problem—Transfer Learning and Pattern-Exploitative
Training.

4.1 Random model

To create a baseline to compare other models two, I created a random model, which guesses at
answers at random with no training. This was implemented with a simple numpy random dice-roll
for each item in the test sets.



4.2 RoBERTa classifier and transfer learning

The first model is a simple ROBERTa-LSTM Classifier. The RoBERTa transformer is fed into a
bidirectional LSTM before a fully connected layer with dropout and ReL U into an output layer with
the number of classes as the output. The learning rate is set initially at 8 - 10~¢ with a StepLR
scheduler with v = 0.25 at every four steps. Those learning rate was chosen since 1 - 107 was
common in the literature in few-shot learning. Setting it to this rate initially, however, increased
training time significantly. Setting it slightly higher with a scheduler improved training time, while
keeping the learning rate low enough to converge well. For the optimizer, I selected the AdamW
optimizer over the Adam due to the differing implementation of weight decay [Loshchilov and Hutter]
2017]. The final version of the model does not use weight decay as regularization, however, and
AdamW is left in as an artifact. Outside of dropout in the fully connected layers, early stopping is the
only regularization utilized.

I chose an LSTM between the fully connected layers and the RoBERTa transformer because of the
meta learning tasks. My theory was the ROBERTa transformer would learn the underlying data, while
the LSTM would learn sequence information from each episode, most importantly the final training
on labeled data.

While performing transfer learning, unlabeled data is used to create new labeled data for the classifier
to pre-train on. This method was inspired by conversations with Dr. Huth, as well as the skweak
[Lison et al.,[2021] library. While I attempted a number of partitions of the dataset, I settled on three
techniques: keyword labelling, emoji prediction, and text ablation. Each time a partition of the data
with these methods were made, all corresponding tweets were removed from the unlabeled data set,
exposing the model to several unique tweets.

In keyword labelling, I took keywords used for gathering tweets from the Twitter API and grouped
tweets by first mention of each keyword. New datasets were created by removing every mention of the
top n keywords from the unlabeled dataset, and classifying each tweet with the appropriate keyword.
To keep training times down to a minimum, I took 2,500 examples for each label. Upon repeat
partitions using this method, common keywords remained across all partitions, but new keywords
were introduced with some regularity. Increasing the number of examples per keyword raised the
number of keywords in the final set.

Emoji prediction followed a very similar pattern to the keyword labelling. I took the subset of all
tweets with emoji, chose the top n emoji in the subset, and labeled data with that emoji. To my
surprise, there were not many tweets with emoji, so these partitions ended up being fairly small in
comparison to keyword labelling. The upshot to this problem was most partitions of emoji data had
distinct labels. I aimed for 1,000 examples of each emoji, but several emoji did not have that many
examples.

Text ablation takes it cue from methods used in transfer learning for images in CNNs. In this approach,
text was arranged into one of four categories—unmodified, reversed, cut, and shuffled. The model
was then asked to classify what had happened to each tweet. A bug was introduced in this technique
which resulted in low accuracy, and it was therefore dropped in the results for this paper.

When pre-training, the datasets are partitioned and fed into the RoOBERTa classifier as meta-learning
objectives, one at a time in a series of episodes. At the end of each episode, the fully connected layers
are removed and replaced with new fully connected layers. The optimizer is reset at the end of each
episode, and the cycle repeats. By exposing the transformer to large section of the unlabeled data,
my hypothesis is the model will perform significantly better than the random and classifier baselines
described above.

4.3 Pattern-Exploitative Training

Pattern-Exploitative Training (PET) is a method of classification, which reframes the classification
task as a natural language generation task. It uses cloze questions to have the model predict a word
over a masked token which acts as a stand in for the class of the item. The full model, as described
by Schick and Schiitze| [2020]], uses several generations of this process and predicts soft labels for
unlabeled data, resulting in improved performance on few-shot learning tasks. As noted above, I did
not have time to implement the full model or soft labelling of the unlabeled data. Instead, I borrowed
the core idea of cloze questions and used it to classify labeled tweets.



Table 1: Mapping class names to cloze question answers. On the left are the classes that were used
during classification, on the right are more natural language answers fill in the cloze sentence, ‘“This
iS ”»

Class Chosen Cloze Word
Spam Nonsense
Scam Untrustworthy

Positive Wonderful
Neutral Boring
Negative  Horrible
Off-Topic  Unrelated

For each class of tweet, I came up with words which I believe captured the essence of each class in
more natural language. These are summarized in Table[I] I believe the choice of words for the cloze
questions could have some effect on the accuracy of this model. Picking words which are a part of
the vernacular of the domain may result in higher accuracy, but this hypothesis is left untested for
now. For each tweet in the labeled dataset, the phrase “This is ____” was appended to the end of each
tweet, where represents a masked token. Each one of these words was added to the tokenizer’s
vocabulary as to make the loss calculation easier. The model was then trained to predict which one of
the chosen cloze words belong in the masked position. This was handled by using a loss function as
detailed in the original PET paper.

Loss = (1 —a) - Lyask + @ - L1y (1)

In Equation (I} both losses L. are Cross Entropy Loss functions. L) is the loss of the prediction
of the masked word, and Ly, is the overall language model loss. « is a constant which sets the
weight of each of these losses into the final loss. I followed the guide of the original paper and fixed
a = 1-107%. For each example, the proper index of the logit prediction is supplied to the loss
function, and the total loss is calculated.

When testing or generating inferences from this model, choosing the predictions set is key to good
results. When testing, instead of choosing the highest probability result, I consider only the indices
of the cloze words in the logit prediction set from the transformer. I perform a softmax on these
predictions before choosing the proper prediction. Without doing this, the model would sometimes
pick on other cues within the tweet and predict words we do not wish to consider for this problem.

5 Experiments

The primary experiment of this project was to investigate how well different models work on the
same data set. My ability to do this was limited by both computational and time resources. I settled
on the two models presented in this paper due to their potential in solving this particular problem,
their ease of implementation, and their relatively low computational cost compared to other few-shot
techniques. My hypothesis was the ROBERTa-LSTM Classifier would perform better on the full
dataset, but would not perform well on the few-shot classification task.

The secondary experiment was to investigate the effects of pre-training on the accuracy of each model.
My hypothesis is that pre-training would increase the performance of both models on the few-shot
classification task, and the general classification task. For the ROBERTa-LSTM Classifier, I pre-
trained the model on subsets of the unlabeled data as described in Section[d.2] I took ten sets of both
generated emoji and keyword datasets, shuffled them, and trained on each until convergence. After
each episode, the LSTM and fully connected layers were removed and replaced with randomized
weights. This training took roughly ten hours to complete. For the PET-based model, I simply
sampled 100,000 unlabeled tweets and pre-trained the ROBERTa Transformer as a language model,
which took roughly four hours. As a baseline, I ran the random model, described in Section 100
times. This random model had an overall average accuracy of 16.04% with a standard deviation of
10.94%.



Table 2: Results from the ROBERTa-LSTM Classifier. The top table is with no pretraining and the
second is with pretraining. Each number along the top represents the number of examples of each
class shown to the model during training. Each training run was exposed to the same test set.

10 20 30 40 50 60 70 Full
spam 60.22% 99.45%  100.% 46.41% 87.85% 41.44%  0.00% 85.64%
scam 0.00% 0.00%  0.00%  0.00% 36.36%  0.00% 0.00%  0.00%

positive  55.68%  0.00%  0.00% 42.05% 0.00% 23.86%  0.00% 39.77%
neutral 0.00%  0.00%  0.00%  0.00% 0.00% 0.00% 14.49% 47.83%
negative 435% 087%  0.00%  0.00% 0.00% 72.17%  0.00% 16.52%
off-topic ~ 0.00%  0.00%  0.00% 50.00%  0.00% 0.00% 86.11%  0.00%
Overall 32.60% 36.20% 36.20% 27.80% 32.60% 35.80%  8.20% 48.40%

10 20 30 40 50 60 70 Full
spam 0.55% 11.05% 34.81% 5691% 17.13% 43.09% 58.56% 60.22%
scam 100% 100% 63.64%  9.09% 81.82% 4545%  9.09% 27.27%

positive 9.09%  341% 0.00%  0.00% 28.41% 2841%  0.00% 27.27%
neutral 290%  2.90% 30.43% 88.41% 59.42% 59.42% 75.36% 36.23%
negative 0.00%  0.00% 3391% 1.74%  0.00% 1.74%  0.00% 25.22%
off-topic 11.11%  5.56% 22.22%  833%  0.00% 11.11% 50.00% 25.00%
Overall 520%  7.60% 27.60% 34.00% 21.20% 31.00% 35.40% 39.80%

Table 3: Results for the PET-based model. The top half is the results with no pre-training, and the
bottom is with pre-training. Overall, these models have better accuracy for individual classes in the
dataset. The pre-trained model, specifically, does better across classes, with no 0% runs when more
than 40 examples of each class are shown.

10 20 30 40 50 60 70 Full
spam 27.74% 41.94% 21.29% 36.13% 38.71% 36.77% 48.39% 69.03%
scam 0.00% 0.00%  0.00% 10.00%  0.00%  0.00% 20.00%  0.00%

positive  57.14% 57.14% 31.09%  9.24% 50.42% 56.30% 35.29% 47.06%
negative 5.00%  0.00% 15.00% 23.33%  0.00% 1.67% 10.00% 41.67%
neutral 12.90% 27.42% 14.52% 25.81% 14.52%  4.03%  8.87% 33.87%
off-topic  15.62%  3.12% 31.25% 18.75% 28.12% 34.38% 3438%  3.12%
Overall 27.00% 33.60% 21.40% 24.00% 29.40% 28.20% 29.40% 46.20%

10 20 30 40 50 60 70 Full

spam 56.77% 39.35% 58.06% 56.77% 44.52% 56.77% 44.52% 65.81%
scam 20.00% 60.00%  0.00% 20.00% 50.00% 30.00% 30.00%  0.00%
positive 5.88% 12.61% 0.84% 17.65% 12.61% 36.13% 30.25% 33.61%
negative  66.67% 38.33% 51.67% 28.33% 51.67% 26.67% 43.33% 48.33%
neutral 5.65% 26.61% 1.61% 28.23% 2097% 2339% 21.77% 54.03%
off-topic 37.50% 18.75% 46.88% 37.50% 40.62% 34.38% 65.62%  3.12%
Overall 31.20% 28.80% 27.80% 35.00% 31.80% 38.00% 36.40% 47.80%




Figure 2: Attention matrices of the two models for a tweet both models predicted as being spam.
On the left are the attention matrices for the PET-based model, which are much tighter. The right
attention matrices are for the ROBERTa-LSTM Classifier and are much fuzzier.

Each model was tested on few-shot datasets. Datasets were chosen at random with 10, 20, 30, 40, 50,
60, and 70 examples of each class. The model was then tested on a withheld test set to calculate the
final accuracy. Due to some technical difficulty in sharing data between Google Colab and my home
computer, the test set for the PET-Based models was different from the ROBERTa-LSTM test set.
Therefore, the results between the two architectures are not entirely conclusive, but I believe they still
generalize well. Test sets were consistent between the pre-trained and nonpre-trained models of the
respective models. Due to the computational complexity of the models, the results presented are from
a single run for each model, rather than an average of several runs.

5.1 Results

The RoBERTa-LSTM with no pre-training had the best overall accuracy, as well as the best accuracy
in spam detection. Unsurprisingly, it was not able to generalize well when trained on the few shot
training sets. The pre-trained version of the ROBERTa-LSTM did not perform as well on the full
dataset, which was a little shocking. It did, however, have a much easier time with the few-shot
datasets, with a more even spread over its accuracies. Most of the accuracies in the 50 and 60-shot
tests were well above the random threshold. In the smaller datasets, however, the accuracies fell well
within the random guessing range.

While the overall accuracy is a little lower, I would argue the PET-Based models performed better
in their experiments. Both the pre-trained and non-pre-trained variants have a low number of
0% accuracies in their table. The pre-trained model in particular shows impressive comparative
performance in the few-shot training datasets, confirming my hypotheses above. While they are not



as confident in detecting spam, they do have overall accuracies comparable to the ROBERTa-LSTM
Classifier.

5.2 Analysis

As a final analytical experiment, I took the pre-trained models trained on the full dataset and plotted
the truncated attention matrices. The RoBERTa transformer has 12 attention heads and each one of
these matrices is the averaged output of all 12. The matrices are normalized, so they scale from 0 to 1
across their respective minimum and maximum values. Two examples of these matrices can be seen
in Figure[5] Both examples use tweets which were correctly classified as spam by both models.

In each pair of matrices I investigate, the PET-based model exhibited a tighter diagonal than the
Bert-LSTM matrices. I believe the reasons for this are one of two possibilities. First, the PET-based
model was pre-trained on two to three times as many tweets as the ROBERTa-LSTM model. Due to
extra training data, the attention weights have become finer-tuned than the ROBERTa-LSTM model.
Second, and more likely, the PET-based model consists of only the RoOBERTa transformer, whereas
RoBERTa-LSTM model has three additional layers on top of it. There are more parameters by an
order of magnitude on the latter model, placing less importance on the attention heads in making a
prediction. Back propagation is distributed across the transformer and the output layers.

6 Conclusion

The key takeaway from this project was the importance of data and quality datasets. One cannot code
their way out of bad data. Classifications in the labeled dataset are not consistent across similar tweets.
Since the amount of labeled data is so small, the networks have a difficult time learning features to
differentiate the classes. Moreover, while classifying a tweet as ‘positive’ or ‘spam’ are two different
labels, the number of labels I chose further complicated the problem. Being more rigorous in the
classification test, or removing duplicate tweets across separate labels would have greatly improved
the efficacy of my models.

I plan on continuing research into this problem. Next steps include fixing the issues outlined in the
previous paragraph. Moreover, I plan on combining the ideas from [Kim et al.|[2022] and [Schick and
Schiitze|[2020]. I believe the PET approach could be improved by introducing a manner to measure
the confidence of soft labels generated by the model. The Lexicon-guided Self Training provides an
interesting way to build confidence around these labels.
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