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Abstract

We introduce a model for general purpose audio embeddings based on using
EnCodec Units. Our approach takes as input a raw stream of quantized input,
unembeds it, and feeds it into a downstream MobileNet. This approach allows
for low-bandwidth streamed inputs to be calculated on-device for low energy and
storage size. We evaluate our approach on a comprehensive set of datasets and
compare to prior work to see where this usecase is best satisfied. We observe that
our model is competitive or state of the art on several classification tasks, while
trailing on speaker-related tasks.

1 Introduction

Digital representations of audio signals are focused on recreation of the source audio and do not
carry rich information about the content of the audio with them. Historically, transforms such as
Mel-Frequency Cepstrum Coefficients (MFCC) and Discrete Cosine Transforms (DCT), and later
deep neural networks, have been used to extract meaningful information from the Audio to perform
discriminative tasks. While the former two examples are generalized transforms, they are the first
step in task-specific pipelines, while the latter example is often trained from scratch on a specific task.
General Purpose Audio Embeddings (GPAE) seeks to find low-dimensional, rich representations
which can be used on several, disparate downstream tasks.

Recent years have seen many approaches to pretraining for embeddings to extract semantic and
qualitative information from audio. Benchmarks, such as SUPERB (Yang et al. [2021]) and HEAR
(Turian et al. [2022]) have been introduced to test proposed embeddings on several tasks, creating a
unified framework to compare different approaches.

In our work, we seek GPAE based on the work of Schmid et al. [2023b] as a preliminary study as
to the applicability of Neural Codecs (Zeghidour et al. [2021], Défossez et al. [2022]) to this task.
While we do not enjoy state-of-the-art results on any tasks, we find competitive results on a few tasks
and reasonable results on many other tasks.

2 Related Work

Audio Benchmarks. SUPERB (Yang et al. [2021]) is a benchmark released in 2021 as a set of
disparate tasks related to speech processing. The goal of SUPERB is to compare the performance of
large self-supervised speech models. Common tasks in Superb include Automatic Speaker Verification
(ASV), Speaker Identification (SID), and Automatic Speech Recognition (ASR). HEAR (Turian
et al. [2022]) is a similar benchmark, though it includes tasks from music information retrieval and
environmental sound backgrounds. Moreover, HEAR is more focused on embedding representations,
whereas SUPERB is meant to evaluate models themselves. In this work, we primarily target HEAR
tasks, though we perform some light analysis on SUPERB tasks. HARES (Wang et al. [2021]) is
a benchmark proposed by DeepMind which sits as a middle ground between the others, with more
Speech than HEAR but more General Audio than SUPERB.
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Audio Models for Speech Representations. The two most common models for extracting low-
dimension representations of audio are HuBERT (Hsu et al. [2021]) and wav2vec (Schneider et al.
[2019], Baevski et al. [2020]). The former learns an audio and language model with a BERT-like
masked objective. The learned representations are then combined in a k-means clustering step. The
latter uses an encoder combined with a context network and quantization module to create discrete
audio tokens.

Audio Models for Music Representations. Music representations differ from speech since Music
typically has much longer time-specific structure in any given example. As such, music-specific
models are trianed to create musical representations. CREPE (Kim et al. [2018]) is a model which
uses convolutional layers to provide pitch estimation. MuLan (Huang et al. [2022]) uses contrastive
pretraining to create music and language embeddings. COALA (Favory et al. [2020]) seeks audio
representations by training two, aligned autoencoders on the time-frequency representation of audio
and the semantic information of tags. MusCALL (Manco et al. [2022]) follows a similar approach,
but does not require downstream fine-tuning like COALA.

General Purpose Audio Models. CLAP (Manco et al. [2022]) and Wav2CLIP (Wu et al. [2022a])
both use contrastive loss to produce embeddings. The former applies CLIP’s (Radford et al. [2021])
methodology while swapping images and audios, while the latter distills from CLIP. COLA (Saeed
et al. [2021]) trains a contrastive model on AudioSet (Gemmeke et al. [2017]) while targeting music,
speech, and environmental audio. Dinkel et al. [2023] proposes a method called consistent teaching
which combines input augmentation and knowledge distillation to train a vision transformer on audio
tagging tasks. Most related to our work is the work of Schmid et al. [2023b] which uses knowledge
distillation to train a MobileNet on an audio tagging task. Layers are then extracted as embeddings
which have shown good results on the HEAR benchmark.

3 Methodology

We follow the approach of Schmid et al. [2023b] which extracts GPAE from prior work which trained
a MobileNet (Howard et al. [2019]) using knowledge distillation on MFCCs (Schmid et al. [2023a]).
We use this approach with few modifications, most notably replacing MFCCs with Encodec (Défossez
et al. [2022]) tokens and experimenting with the learning rate scheduling.

We begin with preprocessing SALT lab’s collection of AudioSet (SALT-AS) (Gemmeke et al. [2017])
for offline knowledge distillation. While Schmid et al. [2023b] uses an ensemble of PaSST (Koutini
et al. [2022]), we are limited by time and compute and instead opt for a single pretrained Audio
Spectrogram Transformer (AST, Gong et al. [2021]) as our teacher model. We use the monophonic,
24 kHz version of EnCodec with a target bitrate of 24 kbps.

During pre-training, we first retrieve the quantized vectors of the EnCodec model and freeze this
layer to avoid updating any weights of the EnCodec model. The resulting matrix has dimensions
of 750 × 128. We use a CNN-based transform to project the tokens to the expected input size of
the MobileNet of 3× 224× 224. As described in Schmid et al. [2023a], we add parameter α to the
MobileNet which is a scaling parameter to change the width of each Block in the MobileNet.

We train each pretrained model for 200 epochs, where each epoch consists of 100,000 examples
drawn from an unbalanced subset of SALT-AS with approximately 1.7M examples. We form a
validation set from the SALT-AS balanced subset. We use the OneCycleLR scheduler provided by
PyTorch with cosine annealing, warming up over 8 epochs to a maximum learning rate of 8× 10−4.
For knowledge distillation, we fix the temperature τ = 1.0 and the teacher weight, β to be either
0.9 or 0.0, where the latter forms a baseline of a MobileNet trained only with binary cross entropy
classification loss.

L = (1− β)LBCE + βLKD (1)

We then take our best performing pretrained model and extract GPAEs from it by using the same
method that Schmid et al. [2023b] uses for their mid-level feature embeddings. Namely, we extract
embeddings from blocks 5, 11, 13, and 15 of the MobileNet model, we do an average pool over the
time dimensions, and we concatenate the resulting feature values. We chose the mid-level features
over the high-level features, the low-level features, and the squeeze-and-excitation features because it
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Figure 1: Pretraining results. Validation mAP for various pretrained models with both knowledge
distillation and without. Baseline models are trained with only binary cross entropy loss, while
kd models are trained with knowledge distillation with τ = 1.0 and β = 0.9. The presented lines
are smoothed by a moving average of 6 epochs with the un-smoothed line translucent behind the
smoothed line. We do not report results on a baseline where α = 4.0 as training stopped early.

was the single set of features that performed the best overall in the HEAR benchmark in Schmid et al.
[2023b]. We used these embeddings for training and evaluating the downstream benchmark tasks.

4 Results

In this section we discuss our results for both pretraining and a few benchmarks from both HEAR
Turian et al. [2022] and SUPERB Yang et al. [2021].

4.1 Pre-Training

For pretraining, we perform limited parameter search on models by selecting α = {0.5, 1.0, 2.0, 4.0},
β = {0.0, 0.9}, and τ = 1.0. We choose these values for β and τ as they are the best performing
hyperparameter settings in Schmid et al. [2023a]. Our best performing model reaches a validation
mAP of 0.370, indicating decent performance in comparison to historic approaches to audio tagging
using AudioSet. This result, however, is far lower than the findings in Schmid et al. [2023a], which
reports a mAP of 0.483.

Unsurprisingly, the best performing model is also the largest, where α = 4.0. For all of the pretrained
models, we see increasing the α bolsters the mAP, as expected. Moreover, knowledge distillation
provides a large boost to the mAP across all model sizes. For example in the model where α = 2.0,
the baseline reaches a mAP 0.247, while with knowledge distillation, the model is able to achieve
0.330.

4.2 Benchmarks

Table 1 shows our results compared to those of other models on ten of the HEAR benchmark tasks.
Our model seems to perform best on the NSynth Pitch and Speech Commands tasks. NSynth Pitch
50h is the only task where our model matches the best-performing model. However, our model does
outperform the simple wav2vec2 and Hubert baselines on a majority of the tasks. (CREMA-D and
VoxLingua-107 are the only two tasks in which our model performs worse than both wav2vec2 and
GURA Hubert.)
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Table 1: Results on the HEAR benchmark versus other models. We compare against HuBERT and
wav2vec2.0 baselines, as well as the results from Schmid et al. [2023b] (mn40_as) and Dinkel et al.
[2023] (ced_base). HuBERT Fuse Cat (Wu et al. [2022b] fuses and concatenates embeddings from
HuBERT, wav2vec2.0, and CREPE.

Models CREMA-D ESC-50 GTZAN
Genre Libricount Vocal

Imitation
Ours 0.5367 0.6565 0.8320 0.6640 0.1591

mn40_as 0.6400 0.9615 0.9080 0.7253 0.2019
GURA Fuse Cat 0.7474 0.7335 0.8050 0.6972 0.1969

ced_base 0.6910 0.9665 0.8860 0.6785 0.2269
wav2vec2 0.6562 0.5610 0.7800 0.6921 0.08006

GURA Hubert 0.6897 0.6035 0.7350 0.6458 0.1540

Models VoxLingua-
107 top 10

NSynth
Pitch 5h

NSynth
Pitch 50h

Speech
Com-

mands 5h

Speech
Com-

mands Full
Ours 0.2902 0.7720 0.8852 0.8744 0.9577

mn40_as 0.3179 0.3040 0.6355 0.7767 0.8472
GURA Fuse Cat 0.7202 0.8460 0.8852 0.9605 0.9677

ced_base 0.3857 0.6820 0.8281 0.8693 0.8967
wav2vec2 0.4928 0.4020 0.6530 0.8382 0.8785

GURA Hubert 0.6368 0.1840 0.4288 0.9530 0.9540

Table 2: Results on the SUPERB benchmark versus other models. We compare against HuBERT −
Base for a standard comparison, and DistilHuBERT for a low-parameter baseline.

Models Params Keyword
Spotting 1

Speaker
Identification

(SID)

Emotion
Recognition

(ER)
Ours 15M 0.78 0.19 0.56

HuBERT Hsu et al. [2021] 96M 0.96 0.81 0.65
DistilHuBERT Chang et al. [2021] 24M 0.96 0.74 0.62

Our model mn40_as is of special interest, since it is a version of the MobileNet model that our
model is based off of. The main differences between our model and mn40_as are that our MobileNet
model uses EnCodec tokens instead of mel spectrogram features as input, our model is pretrained
by distilling from a single model instead of a transformer ensemble, and our model uses a simpler
embedding extraction strategy. Our model significantly outperforms mn40_as in all four NSynth
Pitch and Speech Commands tasks, while mn40_as outperforms our model on all others.

Table 2 demonstrates the results of our model on SUBERB compared to baseline models with
different parameter counts. We choose to evaluate on keyword spotting to test for word recognition in
a mean-pooled setting, and emotion recognition to test for classification-related results on speech.
We find that our model largely underperforms on these speech-related tasks, particularly in SID. This
conforms with AS data, where speaker information is not predictive of downstream labels. This is
somewhat surprising with respect to EnCodec units, however, as papers like VALL-E (Wang et al.
[2023]). This indicates that a drastic difference in parameter count may be causing less observable
EnCodec features to be difficult for the model to analyze.

5 Discussion

Overall, we find that our results largely underperform against the baseline models in speaker tasks. The
lower performance largely comes in speaker-related tasks, such as low scores in speaker identification
(SID) from SUPERB and LibriCount from HEAR. The changes our model introduces largely come
from two places – a full pretrain on AudioSet and the introduction of EnCodec codes. The domain
mismatch from AudioSet pretraining has been observed in prior work, such as the AST pretrained
on AudioSet classification (Gong et al. [2021]) underperforming comparatively on SID with a score
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of 35.2 while getting close-to-SOTA scores on tasks like KS and ER. Using EnCodec codes has
also been observed to be lower-quality for language pretraining, such as in AudioLM (Borsos et al.
[2023]).

However, on classification tasks, our model performs surprisingly well, achieving high-quality results
on GTZAN Genre and NSynth Pitch 50h. This fits a real-world scenario where EnCodec units are
streamed as compressed data to a phone and during decoding alternative classification tasks can be
applied. Future work in this direction can focus on training lightweight classification heads for audio
tasks specific to a downstream user, allowing privacy towards preferences while maintaining quality
and speed.

6 Conclusion

We introduce a model for classification using general purpose audio embeddings from EnCodec units.
We train using a MobileNet architecture and see competitive performance in several classes of tasks,
particularly in music-related classification, with a 5x reduced parameter count compared to HuBERT.
We hope that these techniques will help toward the goal of having private and on-device machine
learning algorithms that can customize to their users’ preferences.
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