
Improving Dataloaders for Visuomotor Imitation
within Robomimic

Davin Lawrence
Computer Science

University of Texas at Austin
Email: dhuck@cs.utexas.edu

Mihir Suvarna
Computer Science

University of Texas at Austin
Email: mihirsuvarna@utexas.edu

Adeet Parikh
Computer Science

University of Texas at Austin
Email: aaparikh@utexas.edu

Ajay Mandlekar
NVIDIA Research
Stanford University

Email: amandlek@cs.stanford.edu

Abstract—Robomimic is an imitation learning framework
for robot manipulation. The unique data, which consists of a
combination of video, trajectories, and actions that together en-
code spatio-temporal information, necessitates task-specific data
loader optimizations to reduce the overhead required for training
and inference. The current method of loading data in Robomimic
pulls all data from a common store and must work to split and
treat each data item separately. To alleviate this independent style
of loading, we try existing low-level techniques, including various
types of caching with compression, and compare the times spent
data loading to try and mitigate total time spent. Additionally,
we showcase our novel addition of PyTorch data pipelines, which
generate a significant speed up in time spent loading data, and
document our tests with results. Despite this framework still
being in beta, we hope that Robomimic will adapt this technique
going forward as it has promising results.

I. INTRODUCTION

In the existing Robomimic [? ] framework, dataloaders are
used natively from PyTorch to set up all machine-generated,
human-generated, and multi-human data that is used through-
out the model pipeline. Input data is provided in the form of
HDF5 files, which is a format that is designed for large het-
erogeneous datasets. The HDF5 files used within Robomimic
contain a mix of data from multiple cameras, low-dimensional
observations of information from the environment, and state-
action-reward information. As this data is inherently large
(scaling beyond 50 GB in some cases), loading and feeding
it into the framework takes a large amounts of time. Our
task within Robomimic is to take a deep look at how the
dataloaders are set up, and come up with various methods
that can help speed up this process for the task of visuomotor
imitation.

The multi-modal data found within a typical Robomimic
dataset presents a unique challenge for data loading. In their
typical implementations, data loaders deal with heterogeneous
data, such as images, text, or video. In this context, the most
difficult task is ensuring all data is of similar dimension, or
handling for variable length in audio, text, or video. Imitation
learning datasets can contain multiple sources of information
as described in the previous paragraph. Each data point must

be loaded and pre-processed separately and ruins any locality-
aware processing available in heterogeneous datasets.

Before we began our research, we realized that there were
a few key problems at hand. First, as mentioned above, all
the data is stored in the HDF5 format. This forces us to treat
samples individually, which takes away opportunities for batch
loading. Secondly, since Robomimic is a framework consisting
of several algorithms, any solutions that we would be im-
plementing in Robomimic must generalize well across these
algorithms. Our task at hand was improving dataloaders for
visuomotor imitation within Robomimic, and any researcher
should be able to take advantage of the optimizations we
make. We also had to ensure that any modifications to data
loading does not negatively affect the performance of the
current framework. Training can sometimes take hours, and
in our case, we were limited to a single machine with an
NVIDIA RTX 3090. To test whether modifications to data
loading were statistically significant, we had to let the whole
framework train and ensure that performance did not degrade.
Another key point was to guarantee that any changes we make
are hardware-agnostic; virtually anyone should be allowed to
train, on various machines.

In this paper, we explore various strategies for improving the
data loading time within Robomimic. We begin by reviewing
related work in section ??. Section ?? describes the current
caching strategies already present in Robomimic and our own
caching strategies. Section ?? describes are primary contribu-
tion to Robomimic–implementing the TorchData data pipeline
and the robo file format. We find that using the TorchData
data pipeline significantly improves the time spent loading data
from disk. Section ?? describes the results of both our caching
and data pipeline implementations. Finally, we describe some
further work and conclude.

II. RELATED WORK

Our first research attempt was to review the related work
laid out before us on the task of data loading. We found that
a lot of work done on dataloader research was within the last
decade, and not as extensive as we had hoped it to be. Instead



of getting techniques from these papers, we were able to find
high-level big picture overview ideas that pointed us in the
right direction to proceed. Since data is permutable and can be
represented thousands of ways, there’s no one-quick-trick that
is proven to speed up data loading, rather multiple techniques
that must be applied and thoroughly tested.

The overwhelming majority of AI and robotics research is
focused on algorithmic development and their implementa-
tions. As a result, the literature is quite sparse when it comes
to the topic of data loading. Of the handful of papers we could
find in relation to data loading, two of them were published
this fall.

? ] discuss various techniques to improve the default Py-
Torch dataloader, both in the context of single and distributed
GPU training. Their approach depends on caching either to
RAM or disk before or during training. This caching increases
loading speed, but also enables locality-aware data loading
scheme which greatly increases throughput on multiple GPU
training. While caching is indeed part of our approach, we
found caching strategies alone to be insufficient to increasing
the data loading performance for Robomimic. Importantly, ? ]
are focused on data involving a single modality with datasets
which are more likely to be partitioned easily into RAM
caches.

? ] provides a survey of current data loading implementa-
tions for PyTorch. The authors compare seven data loading
libraries: Squirrel, PyTorch, TorchData, FFCV, WebDataset,
Deep Lake, and Hub. Notably, they compare these dataloaders
both on multi-GPU setups as well as single GPU machines.
Furthermore, the authors compare appropriate dataloaders’
performance when pulling data from a network file system,
which has interesting applications for cloud training. We
take a similar approach by trying dataloaders outside of the
default PyTorch dataloader. Due to the high development cost,
however, we only successfully implemented the TorchData
dataloader. A key difference between ? ] and our work is the
underlying data; they use ImageNet and CIFAR datasets while
we are optimizing for multi-modal, complex data.

There are a handful of other data loading approaches which
informed our work but did not directly affect it. ? ] describe
a grid search strategy for fine-tuning the PyTorch data loader.
We believe this approach would be too costly for any benefit
in the context of Robomimic. ? ], ? ], ? ], and ? ] all describe
approaches for speeding up training ResNet on ImageNet. All
of these papers describe a mix of data loading improvements
on top of algorithmic heuristics to improve ImageNet. ? ],
? ], and ? ] all describe the process of dataset distillation,
which is the process of identifying similar trajectories or data
points within a dataset which are combined with the goal
of minimizing the size of the dataset without affecting the
accuracy of training. While we were not able to implement
these techniques due to time constraints, we believe that
distillation of Robomimic data could further improve data
loading.

Fig. 1. Comparison of current caching strategies in Robomimic on the Lift
PH dataset. This test performs with a sequence length of 50 with no batching.

III. CACHE

Caching is a popular strategy to utilize the hierarchy of
memory in a computing system. Nearly all of the papers
discussed in section ?? utilize some form of caching for
their performance gains. In this section, we discuss the built-
in caching strategies found within Robomimic’s Sequence-
Dataset. We then describe the two caching techniques we
pursued–LRU caching of data and a novel compressed cache.

A. Current Caching Strategies

As mentioned above, native Robomimic comes with three
caching options. No cache means absolutely nothing is cached;
the dataset is independently loaded into memory and the OS
decides what to evict and keep. The low-dimensional caching
specifically caches all the low-dimensional observations; i.e,
robot position, velocities, object position information, and
other data. Caching the full dataset, in this framework, is
caching all the low-dimensional information plus the images
that are used for training.

For us to have any improvement over these strategies, we
needed to find a good benchmark. We performed an initial test
loading in a batch size of 1 of sequence length 50 as seen in
Figure ??. As expected, we see the performance of caching
the entire dataset outperforms the other methods, with low-
dimensional caching outperforming no cache. In our initial
testing, we find that the in-memory storage of a dataset has
an 8x increase from the data stored on disk with the HDF5 file.
This is due to images being stored as chars in the dataset while
being converted to 32-bit floats in memory. Since caching
entire datasets is infeasible for all but the smallest available
datasets, we use low-dimensional caching as our baseline
target for all of our approaches.

Interestingly, we notice some variability in the data loading
time. We suspect the slowdowns in these methods are due
to variance to system level caching as well as the method of
querying data in the SequenceDataset. Some sequences require



padding, which can incur a computational burden when pulling
data from disk or the cache.

B. LRU Cache

LRU cache was the second technique we tried. Any cache
requires an eviction policy to determine which objects reside in
memory. A LRU cache uses a policy which evicts the last re-
cently used object to make room for new objects in the cache.
This is a popular option when designing caches and seeme
like a natural option for our task, as LRU caches keep what’s
been ”recently used.” However, upon implementing our LRU
cache, we found a 2 - 3.5x slowdown in performance. Our
initial testing showed that with the large datasets, especially for
Machine-Generated (MG) tasks, LRU cache performed quite
poorly. We believe this is because the LRU cache has no way
of knowing which objects are currently being used. During
training, samples are selected at random, so it is impossible
to design an eviction policy that can effectively choose which
samples to keep. The overhead is primarily due to repeated
eviction with most attempted cache reads being misses.

We did not pursue training further with LRU and abandoned
this approach early on after noticing the large amounts of time
that it spent training; it was deemed a waste of computation
time, as it correlated with a decrease in efficiency, and we
decided to focus our research efforts in other dimensions,
specifically with compressed caching and training.

C. Compressed Caching

Working under the hypothesis that decompressing informa-
tion from memory would be quicker than reading from the
HDF5 file, we implemented a compressed cache technique
with the goal of being able to fit the majority, if not all, of
a given dataset. While we were able to fit entire datasets into
memory, we found the devil was in the details of implemen-
tation and could not beat the performance of low-dimensional
caching alone.

For both of our caching strategies, we targeted the RGB
camera observations as the compression targets. We ig-
nored the low-dimensional observations since they are small
and therefore not appropriate candidates for compression.
The overhead for compressing and decompressing the low-
dimensional spaces was not worth the minuscule gain in space
efficiency.

Our initial compression approach involved using lz4 com-
pression due to its speed and wide library support. We were
able to compress Numpy data arrays directly into memory
but found that data typing and other meta data was lost
on this approach. Furthermore, compression required us to
modify the data structure in such a way that good patterns
could be found for compression techniques. Finally, we found
that reconstructing the Numpy arrays post decompression
was non-trivial to implement and severely offset any gains
from compression. Early experiments for this approach found
significantly worse performance than not caching at all.

The final compression approach was to use the Numpy
savez_compressed method to cache the Numpy arrays.

This resulted in a much simpler implementation due to the
Numpy being able to hint and reconstruct its data typing and
internal structure. Moreover, using this method allowed us
to save multiple observations in a single compressed archive
rather than having to compress each observation separately.
This approach resulted in nearly an 8x decrease in RAM usage,
allowing larger datasets to be stored in memory and disk when
using a flexible swap space. Despite these gains, we found our
compressed cache strategy performed only slightly better than
the no caching approach. This is primarily due to the complex-
ity of implementation, namely the fact that we must deep copy
every compressed buffer before decompressing, otherwise the
compressed buffer would be expanded in memory. For larger
batch sizes, this issue compounds since every item in the batch
must be copied, expanded, and temporarily stored in memory.

IV. DATA PIPELINES

TorchData [? ] is a new library from the PyTorch team
which creates a new paradigm for loading data in any machine
learning workload. The goal of these data pipelines is to
create a modular approach to data loading and preprocessing
rather than inheriting and implementing a novel Dataset class
as is the common practice today. This approach allows for
flexibility in implementation, while creating new opportunities
for parallelism and caching. For example, any complex pre-
processing step can be explicitly cached either in memory or
on disk. In multi-modal setups such as Robomimic, different
types of data can take different paths through the resultant
data flow graph. While our implementation of the TorchData
is quite nascent, we find re-implementing the SequenceDataSet
class as a data pipeline creates a significant gain in data loading
efficiency.

TorchData comes with one major caveat: it is still con-
sidered to be in beta. The library page states that the API
is subject to change without warning. At time of writing,
TorchData 0.5.0 is the most recent release of the data pipeline
API. Since there is no timeline as to when TorchData will be
considered stable, we recommend using it as an alternative to
the SequenceDataset set in the configuration JSON rather than
an outright replacement for the current SequenceDataset class.

A. SequenceDataSet

In this section, we will briefly describe the current dataset
implementation used by Robomimic. The SequenceDataset
provides an interface to the HDF5 store of information for
each dataset provided by Robomimic. It performs quite a bit
of preprocessing and stores a significant amount of state used
for retrieval and preprocessing. The two caching strategies
described in Section ?? are implemented in the constructor of
this method and used in the necessary __getitem__ call.

Most importantly, the SequenceDataset abstracts away the
idea of individual demos, allowing the user to query an arbi-
trarily long sequence from any point in the dataset. Therefore,
the length of the dataset is not the number of demonstration,
but rather the total number of individual steps in each sequence
provided by each demonstration. Upon loading the HDF5 file,



Fig. 2. Flow chart demonstrating the various stages of the current TorchData pipeline implementation. TorchData’s IterableWrapper and
TarArchiveReader functions open and provide access to the robo file. The first Mapper function unpacks the data into dictionaries that can be handled
as a key-value store in an adjustable-size, optional cache. Values are then provided to a get_item function modelled after Robomimic’s original data set
implementation. Finally shuffling and batching is handled inside of the Data Pipeline rather than the torch Data Loader.

Fig. 3. Robo File Format

the SequenceDataset calculates an index into each dataset
for each step of the dataset and maps this in a dictionary
which stores an index to demonstration key. This allows for
a small number of demonstrations to become quite large with
intermediate sequences for movement and success. Whenever
a DataLoader calls __getitem__ on a SequenceDataset,
the index is used to calculate a starting index within a
demonstration, which then returns a subsequence from the
demonstration.

B. The robo File Format

A significant amount of the labor of implementing the
new data pipeline approach was in developing a novel file
structure for use in the data pipeline. The HDF5 file format
is incompatible with torch Data Pipelines since it is not
pickleable. Using the h5pickle library as a workaround
resulted in worse performance than the original approach and
was quickly abandoned. We also attempted implementing the
robo file set using JSON objects, but quickly realized this
created large datasets where every piece of information had
to be translated from a string back into an int or float before
being used by the data pipeline.

The robo file format is based on lessons learned while
implementing compressed caching as described in Section

??. Each demo key from the HDF5 file is extracted and
converted into a npz file by flattening the dictionary pulled
from the HDF5 file and storing it as a npz file using the
savez method in Numpy. The same procedure is used for the
mask dictionary, which describes various training/validation
splits used in benchmarking. Finally, we create two JSON
objects describing metadata gathered from the HDF5 file. The
env_args object stores environment metadata, while the
attrs object stores metadata gathered from each individual
demo. The robo file format is illustrated in Figure ??.

There is no reason the current Dataset implementation in
Robomimic couldn’t use this file format instead of the HDF5
file, outside of time spent in development. This development
may be worthwhile since it would elucidate the gains from
the file format alone versus gains from the Data Pipeline
implementation. Additionally, TorchData has the functionality
to decompress files as part of its pipeline. Compressing the
individual Numpy objects using xz or gzip could provide
significant space savings on disk and time spent downloading
datasets.

C. Data Pipeline

The current implementation of the TorchData data pipeline
is outlined in Figure ??. The process begins with the robo
file as described in the previous section. TorchData han-
dles the unpacking and navigation of the tar file in the
TarArchiveReader, providing a list of objects inside the
robo file to nodes downstream. Before reaching the Mapper, a
Demultiplexer is used to split off the different document types
inside of the robo file. The Mapper is only used on the demo
objects from the robo file. This provides a simple function
which reconstructs the Numpy objects as dictionaries. Finally,
the demo objects are placed into an optional, adjustable-size
cache as a key-value store to be used by a final get_item
function which provides the same functionality as the current
Dataset implementation.

The data pipeline describes a data flow graph where data
flows across edges to computational nodes. The current im-
plementation is the simplest form of a graph, a direct line
from source to output, but other configurations are possible.
For example, different modalities can be processed by unique
pipelines and cached separately, leading to greater utilization



Fig. 4. All visualizations presenting in this figure are on the Lift PH dataset with a epoch of 100 steps for 25 epochs. Top Left: Comparison of SequenceDataset
and DataPipeline varying the batch size. For these experiments, sequence length is fixed at 10. Top Center: Comparison of the two data loaders using different
sequence lengths. for each of these experiments, the batch size is fixed at 64. Top Right: Time spent data loading per each epoch in a 25 epoch run. Bottom
row: Average L1, L2, and cosine similarity loss for for both of the data loading methods across all batch size and sequence length variations.

of system memory. Currently, the only caching strategy is
to cache as soon as data is pulled from the robo file, but a
caching strategy which mimics the current low-dimensional
information caching could easily be implemented.

Much of the development work for our initial data pipeline
re-implements the methods found in the SequenceDataSet
class. This is essential to allow the data pipeline to be used
as a drop in replacement for the SequenceDataSet. Further
enhancements could be made by fine-tailoring these functions
for use with the robo file format and vice versa.

V. EXPERIMENTS

In this section, we present our findings on the performance
gains given by the current data pipeline implementation. All
experiments were run on a dedicated machine with a Ryzen
Threadripper 1900x 8-core 3.8GHz CPU, 32 GB of DDR4-
2133 RAM, and a NVIDIA RTX 3090 GPU. For each test, any
system or user software which utilizes the GPU was disabled,
ensuring there was no contention for GPU resources during the
tests. For most of the tests, the lift PH dataset was used since
it is small enough to run quickly and to be cached completely
into memory without reverting to swap. Furthermore, while
we believe that the DataPipeline should generalize regardless
of the algorithm, all tests are performed using the Behavioral
Cloning implementation in Robomimic.

A. Compressed Cache

For testing the compressed cache, we fixed the batch size at
64 and queried sequences of length 60 from the lift PH dataset.
The sequence length of 60 was chosen as this is longer than

Fig. 5. Comparison of Compressed Caching to the original low-dimensional
cache already implemented in SequenceDataSet and no caching at all.

all but a few of the demonstrations present in the dataset.
Ideally, this would maximize the gains from decompressing
in memory, since the entire demonstration will be used upon
being decompressed rather than just a small fraction of the
dataset. Results were collected and averaged over 50 epochs
with 100 steps for each epoch.

The results in Figure ?? show there is no performance
gain in performing the compressed cache. Even when adding
additional workers, we find the performance does not compare
to even the no cache approach already used in the Sequence-
Dataset. Interestingly, we also find the low-dimensional cache



Fig. 6. Comparison of Data Pipeline Caching

suffers from increasing the data loading worker count. We
hypothesize this is due to the increased memory pressure due
to synchronization between workers and a large sequence size.

B. Data Pipeline

For the data pipeline tests, we tested performance by varying
the sequence length and the batch size. We believe that the
sequence length will have varying performance gains depend-
ing on the hit rate of a full sequence versus a sequence which
needs to be padded. Conversely, fixing the sequence length and
varying the batch size should have a consistent performance
profile for each batch size. Due to time constraints, we only
train for 25 epochs with 100 steps per epoch. We include the
L1, L2, and cosine similarity loss as measures of convergence
to ensure our data loading approach converges similarly to the
SequenceDataset. We did not train or analyze success rates as
the time burden would have limited the breadth of experiments
we were able to perform.

Figure ?? shows the results from these experiments. We find
that the DataPipeline implementation consistently outperforms
the SequenceDataset implementation. This is most notably
consistent across the all batch sizes, with greater gains coming
from large batch sizes. For sequence length, we see some
variance in the gains depending on the sequence length.
Additional tests could be performed, but we believe this is
due to hit rate on sequences which are fully in a demo rather
than sequences which require padding. The line graph in the
top right of figure ?? highlights an important characteristic
of the DataPipeline implementation. For every workload, the
gains are amortized across longer training runs. The first epoch
always incurs a heavy loading cost.

To ensure that our DataPipeline implementation is not
custom fit to the lift dataset, we also perform tests on the
square MH dataset, which is approximately ten times larger
than the lift dataset. Moreover, using a larger dataset allowed
us to test the in memory caching stage of our pipeline. To
this end, we ran the test with the cache fully enabled with
no size restraint, restrained the cache to 16 GB, and turned
the cache completely off. We also ran the same test using the
SequenceDataset with the low-dimensional cache strategy for
comparison.

The results for this experiment are found in figure ??.
The amortization of the loading time in Data Pipelines is
more visible in this approach than in the previous experiment.
We find that this is even more pronounced with a larger
cache than without, though it is present in all workloads. In
comparison, the SequenceDataset does not incur such a cost.
For this experiment, the SequenceDataset run was on average
20 seconds faster than the DataPipeline. This suggests that
the DataPipeline implementation still has work ahead of it to
generalize across all datasets. However, in a realistic training
scenario with many more epochs, the cost of the initial loading
of the DataPipeline should be amortized.

We would like to address the initial results presented in
the poster session prior to this report. In this presentation, we
showed a graph which suggested much higher efficiency gains
than presented in this paper. The results from the presentation
were due to a misunderstanding in how sequences were loaded
from the dataset into memory. As a result, our data loading
approach was not able to converge with that implementation.
Fixing our implementation required additional pre-processing
steps which clearly affected performance. We expected a
decrease in efficiency from the results presented previously.

VI. FURTHER WORK

While we believe we have made great strides in improving
dataloaders for Robomimic, there is further work that we
would like to explore at a later date. One such research
initiative is to explore other Data Pipeline configurations. As
the library is still in beta, we anticipate there to be more con-
figurations available throughout its development and eventual
release. Presently, there are other ways we could organize the
data flow graph to allow different forms of data to follow their
own paths through the graph. This approach would allow for
better parallelization and better caching opportunities.

Another initiative will be for us to study the effect of ob-
servation sizes on training. This is an approach we anticipated
reporting on in this paper, but we were not able to due to time
constraints. As expected, the largest aspect in the datasets is
the image RGB data. Finding methods to cut down on this
size would greatly increase the flow of data from disk into
the training loop. In the future, we would like to lower the
dimensions of images and videos (say from 84x84 to 28x28)
and study the effects on training time versus loading time.

Going past the scope of working on our profiled RTX 3090,
we would like to also perform some large scale testing at some
point to ensure that our results were statistically significant.
We had limited access to compute resources over the course
of this research, and in the future we hope to test on a parallel-
GPU architecture and assess how well it performs.

VII. CONCLUSION

We conducted a number of experiments to quantify our
efforts to improve dataloaders for visuomotor imitation in
Robomimic, and found varying results for different tech-
niques. We first performed detailed profiling of the Robomimic
framework to understand exactly how time was spent during



training, and found that majority of it was spent loading in the
data in each epoch.

We explored compressing the dataset and caching, working
under the hypothesis that decompressing the information from
memory would be quicker than simply reading from the HDF5
file. Upon testing this in our experiments, we found that other
memory issues, such as buffer copying and space restraints,
imposed a limit to any gains we had seen in data loading,
essentially bringing the data loading speeds back to having no
cache at all.

Finally, we implemented a novel data loading approach
using PyTorch Data Pipelines, which discarded the old HDF5
format and resulted in the biggest delta for data loading
in Robomimic, with all other components of the framework
being left intact. Despite Data Pipelines being in beta, we
believe that future releases of Data Pipelines, with numerous
configurations, will greatly speed up data loading and total
training times, and is a viable addition to a future release of
Robomimic.


