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Abstract

Resonating Visuals: Generative AI Strategies for Capturing

the Essence of Music in Image Form

Davin Lawrence, M.S.Comp.Sci
The University of Texas at Austin, 2024

SUPERVISOR: David Harwath

This thesis studies methods of generating images which captures correspond-

ing semantic information of music. The primary goal of each method is to generate

an image given a song as the input. First, I describe a model-agnostic LLM interac-

tion method which extracts information from lyrics to generate an image generation

prompt. Second, I describe a model which produces image generation prompts di-

rectly from source music by presenting the problem as a music captioning task. To

achieve this task, I create a synthetic dataset of music-image pairs first extracted

from music videos before being captioned with a BLIP2 model. Finally, I further use

this dataset to fine tune a Stable Diffusion model to produce images conditioned on

text-audio pairs by introducing a CLAP encoder to the Stable Diffusion pipeline.
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Chapter 1: Introduction

Music is a uniquely human practice that spans across the globe and through

time into antiquity. Nearly every culture has their own rich musical tradition informed

by their shared cultural knowledge. In my own culture, music is used for celebration,

for mourning, for filling gaps in conversation, and for so much more. My own life,

and I assume the life of the reader, has been punctuated with important memories

accentuated by favorite songs and pieces of music. Likewise, cultures across the globe

have rich traditions in visual art. As with music, visual art serves many purposes,

whether it to be to simply document important historical figures, or evoke deep

emotion within the viewer.

Images and music both carry semantic information which relate information

or evoke emotional responses in viewer or listener. Each modality has been used

to bolster the other. For example, music is often used in film to add urgency to a

tense situation or to evoke strong emotions during as a tragic event unfolds on screen.

Terminology from one modality is borrowed to describe the other, such as when we

describe the color of a piece of music or the tone of a photograph. In the case of music

videos, images are added to the music to carry information about the personality of

the performer or to add emotional weight to the music itself.

This work seeks to find the creative correspondence between the two modali-

ties, specifically to create visual artifacts which correspond to a given sample of music.

Music creation in the modern era is an increasingly solo endeavor, where an emerg-

ing musician must handle their own promotional material, marketing and promotion,

scheduling, while still finding time to create and perform their music. The overar-

ching goal of this work is to create tools which can lessen this burden on musicians.

Digital music platforms are increasingly pushing for the inclusion of visual artwork

to accompany music while streaming. The tools developed through this thesis aim
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to assist musicians in creating such art, so they can focus on their primary mode of

expression.

The last couple of years have been a whirlwind of advancement in many so-

called generative models, with image and video generation enjoying rapid progress.

Despite the quick jump in quality of generated images, these models still largely rely

on natural language as their conditioning input. Conditioning on other modalities

is largely unexplored, with music being perhaps the least explored. In this work, I

explore three methods to bridge the gap between music and image generation. First,

I describe the process which is currently used by Vibe Video1 and their competitor

MusixMatch2. Both of these are commercial systems which rely on a multi-turn

LLM interaction to extract information from lyrics which is then synthesized into an

image generation prompt. Second, I explore generating prompts for image generation

models directly from musical inputs using a novel Encoder-Decoder model. Finally,

I condition a Stable Diffusion (Rombach et al., 2022) model on musical inputs by

combining text and audio embeddings. To study all three of these approaches, I

collect two datasets of music videos as described in 3.

I begin this thesis with a literature review in Chapter 2. In the context of

machine learning and AI research, the combination of music and imagery has been

understudied. Prior work has largely focused on retrieval tasks, such as linking appro-

priate music to video (Suris et al., 2022), or discovering a common emotional space

between images and music (Won et al., 2021; Stewart et al., 2023). Work has been

performed for general audio in the context of Foley and sound effects for film (Yang

et al., 2022; Yuan et al., 2023). Additionally, researchers have explored generating

general audio from images (Iashin and Rahtu, 2021; Sheffer and Adi, 2022) as well

as generating images from environmental sound (Wu et al., 2022). To my knowledge,

application of music to produce imagery is lacking in the literature.

1https://vibevideo.ai
2https://musixmatch.com
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The first approach I describe in chapter 4, represents existing work condition-

ing image prompts from lyrics. This work was developed by Ben Gillin at Vibe Video

and represents the main motivation for the following methods. This work is centered

around a multi-turn interaction with a LLM model to extract metadata about the

lyrics and synthesize them into an image prompt which can be fed to an image gen-

eration model. My contributions to this work are two-fold. First, the majority of my

contribution to the approach was engineering-focused, making small tweaks to the

pipeline to make it more amenable to deployment. More importantly, I introduced

quantitative analysis into the approach. Prior to my involvement, work on the strat-

egy was done in an ad-hoc manner. In this section, I develop the analytical framework

which will be applied to other methods. The lyric-to-prompt pipeline will act as a

baseline for other work throughout this thesis.

The lyric-to-image pipeline is completely dependent on external APIs and

lyrics, which is not a universal feature of music. In chapter 5, I address the short-

comings in the lyric-to-image pipeline by producing prompts directly from music. I

introduce this as a modification to the music-captioning task, where the captions no

longer describe the music, but rather images which represent a good accompaniment

to the task. I train a family of models based on an Encoder-Decoder structure on this

task and compare the results to the LLM interaction baseline, as well as each other.

To train these models, I collect two datasets which are described in detail in chapter

3. Each of the models produce reasonable prompts for image generation, however, it

is difficult to ascertain the exact correspondence to the underlying music.

Chapter 6 documents the work and challenges of producing images directly

from music and music-text pairs. I develop a family of models which attempt to solve

this problem using the datasets described above. First, I describe a model which

fine-tunes an off-the-shelf Stable Diffusion model (Rombach et al., 2022) with audio

embeddings extracted from the CLAP Audio model (Wu et al., 2023b). Second, I

directly provide CLIP embeddings (Radford et al., 2021) from the Wav2CLIP model

(Wu et al., 2022) in a training-free approach.
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Chapter 2: Literature Review

The work performed in service of this thesis draws on the ideas from several

subfields within AI research. The most notable of these fields are audio and music

information retrieval, generative models, and multimodal information retrieval. In

this section I will highlight notable works which are landmark moments in their field

as well as other works which are directly related to the work performed here.

2.1 Audio and Music Information Retrieval

Information retrieval as applied to audio has several nuances as compared to

information retrieval on other modalities such as images and text. As a modality,

audio has the notion of different types of audio, commonly categorized as speech,

music, and environmental sound. Each of these sub-modalities carries its own type

of information, and as a result, its own family of approaches. Of the three, speech

is perhaps the most studied with a rich history of Automatic Speech Recognition

(ASR) and rapid advances in text-to-speech (TTS) systems. While music information

retrieval (MIR, see 2.1.2) has benefited from research in these fields, MIR contains

additional challenges to researchers due to the fundamental differences between speech

and music. Speech can be represented at the phonetic level, requiring representations

with periodicity on the order of milliseconds. Tasks in MIR, on the other hand,

struggle to extract meaningful representations from such frames, as musical structures

can vary over several time spans with several time-dependencies (Dieleman et al.,

2018). In the task of music segmentation, for example, what constitutes a verse and

chorus can span the time-frame of several seconds or even minutes in extreme cases.

Moreover, repetitions of the same structure often have slight variations within them,

further muddying the task. While the two fields are related, they often necessitate

subtle differences in their approaches.
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2.1.1 Audio Classification

Audio tagging is a classification task which aims to match an audio with a

set of labels. Audio data is typically multi-label as there could be several unrelated,

overlapping sounds in a single example (Wang et al., 2021). High quality, separated

audio data requires highly-controlled environments and can be expensive to produce.

Moreover, source-separated audio does not represent real-world situation in which

models are deployed. Work in this field is typically guided by AudioSet (Gemmeke

et al., 2017), a massive ontological dataset with roughly two million examples with

527 classes. ESC-50 (Piczak, 2015) and UrbanSound (Salamon et al., 2014) are two

environmental sound datasets which assessing in sound event detection. FSD50k

(Fonseca et al., 2022) is a more recent dataset constructed from the FreeSound library1

while adhering to the AudioSet ontology.

Progress in audio classification has largely followed the overarching trends

in other fields such as computer vision. Early efforts used shallow fully connected

layers (Gemmeke et al., 2017) before finding early successes in CNN architectures

(Hershey et al., 2017; Kong et al., 2020b). Further improvements were made with

the introduction of attention modules and transformer architectures (Gong et al.,

2021a; Koutini et al., 2022). Gong et al. (2021b) studied training techniques and

showed pretraining and label aggregation can boost accuracy while minimizing the

final network size. More recent work has continued to minimize model size using

distillation from transformers to CNN-based Residual Nets(Schmid et al., 2023) or

from large transformer ensembles to minimized, efficient Vision Transformers (Dinkel

et al., 2023).

2.1.2 Music Information Retrieval

MIR comprises several sub-tasks such as genre classification (Lee et al., 2020;

Zeng et al., 2021; Zhao et al., 2022), pitch estimation (Kim et al., 2018), beat de-

1https://freesound.org/
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tection (Hockman et al., 2012; Mauch and Dixon, 2012; Nieto et al., 2019; Heydari

et al., 2021; Chen et al., 2023a), and music transcription (Humphrey and Bello, 2012;

Thickstun et al., 2017; Hennequin et al., 2019; Li et al., 2019; Kelz et al., 2019; Sala-

mon et al., 2021). Most related to my work is Lyric extraction and alignment. ASR

systems trained with music inputs perform very well on this task. Despite being

evaluated originally on speech, casual observation shows Whisper (Radford et al.,

2022) works well on lyrics, with alignment being further improved by variants such

as DistillWhisper (Gandhi et al., 2023) and WhisperX (Bain et al., 2023). LyricWhiz

(Zhuo et al., 2023) further improves on Whisper by prompting ChatGPT to produce

the most likely correct lyrics from multiple whisper inferences on the same audio. Gao

et al. (2022) first identify and condition on the genre of music before producing lyrics

to assist the model with difficult genres of music such with distorted vocals such as

heavy metal or fast lyrics as in hip hop.

2.1.3 Learning useful representations

Audio is a high-dimensional data source which contains perceptual informa-

tion, such as pitch and timbre, as well as meaningful information through speech and

music. Working directly with raw audio waveforms is computationally inefficient at

best and intractable for some tasks at worst. Representation learning seeks compact,

low-dimensional representations which can be used on a variety of downstream tasks.

Historically, speech and music systems have relied on spectral features to extract in-

formation from source audio. In contrast, learned representations have driven recent

progress in automatic speech recognition (ASR), audio tagging and classification, and

audio generation. Early learned representations focused on dilated CNNs (van den

Oord et al., 2016) and RNNs (Mehri et al., 2017; Kalchbrenner et al., 2018), before

giving way to self-supervised models such as Wave2Vec (Baevski et al., 2020) and

HuBERT (Hsu et al., 2021). Both of these models learn strong representations in

pretraining, but are exclusively trained on speech data. MusicBERT (Zeng et al.,

2021) and more recently MERT (Li et al., 2023b) have extended HuBERT to music
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data to address difficulties of longer temporal correspondence in music data. Neural

Codec models (Zeghidour et al., 2021; Défossez et al., 2022) have shown to produce

powerful representations using residual vector quantization, and have impressive ap-

plications in generative audio (Copet et al., 2023; Vyas et al.). Generative models

have also been shown to produce useful representations (Castellon et al., 2021)

Multimodal and contrastive approaches have shown to produce useful features

for a variety of tasks. COALA (Favory et al., 2020) and COLA (Saeed et al., 2021)

both use contrastive learning to produce speech representations. COALA additionally

addresses speech and text alignment by simultaneously learning text representations.

MuLan (Huang et al., 2022) learns music representations from contrastive learning

on music and noisy text such as playlist titles, lyrics, and video comment. CLaMP

(Wu et al., 2023a) employs a similar approach but utilizes a RoBERTa (Liu et al.,

2019) language model to denoise and combine several text descriptions. CLAP (Wu

et al., 2023b) uses finds representations of audio and text, training on both labels

from AudioSet and captions from AudioCaps (Kim et al., 2019) and (Drossos et al.,

2019). MusicCaps (Doh et al., 2023) generates natural language descriptions from

tagged music and uses the synthetic dataset to train language model to produce

music descriptions.

Contrastive learning has also been applied to music-image and music-video

pairs. Wav2CLIP (Wu et al., 2022) learns by freezing CLIP (Radford et al., 2021)

image encoders and using a contrastive loss on an audio encoder. Won et al. (2021)

sought to learn an emotional embedding space motivated to pairing music to stories

from text. Emo-CLIM (Stewart et al., 2023) follows a similar approach by audio

representation from CLIP’s vision encoder. Rather than use direct text descriptions,

they group music-image pairs based on emotional descriptions to create emotional

embeddings. (Suris et al., 2022) defines a multimodal retrieval task to pair appropriate

music to a given video. Avramidis et al. (2023) learns audio representations using

accompanying music videos as contextual information.
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2.2 Generative Models

The past few years have witnessed rapid development of generative models

with the development of diffusion models (Ho et al., 2020; Dhariwal and Nichol, 2021).

Diffusion models learn to perform a denoising process by predicting the amount of

noise added to an image. Most related to my work is Stable Diffusion (Rombach

et al., 2022), an open-sourced image generation model from StabilityAI. Rombach’s

key contribution was several computational enhancements to the diffusion problem,

notably moving the diffusion process to the latent space of variational autoencoder.

Further work studies the effects the ability of editing existing images through cross

attention control (Hertz et al., 2022) or by directly guiding the diffusion process (Brack

et al., 2023). Similar techniques have given rise to video generation (Yang et al.,

2022; Chen et al., 2023b; Liu et al., 2023b). Blattmann et al. (2023) extended Stable

Diffusion to video by adding temporal convolutions to track consistency between video

frames for videos ranging from three to five seconds. OpenAI recently announced their

SORA model (Brooks et al., 2024) with claims of video generation lasting up to an

hour. The authors formulate video generation as being akin to a language modeling

task, allowing for long term dependencies in generated videos.

2.2.1 Audio and Music Generation

Audio generation has largely followed the approaches in the vision field, with

advances in text-to-speech (Wang et al., 2023a), audio editing (Peng et al., 2024),

environmental and Foley sound creation (Borsos et al., 2022; Yuan et al., 2023), and

music generation (Copet et al., 2023). As in classification tasks, audio has built

in difficulties when performing a reconstruction task. A common preprocessing for

audio models is to perform a Fourier transform as a first step in feature extraction.

A side effect of this transform is the removal of phase information of the original

audio, which is crucial for realistic audio synthesis. Early neural approaches invoked

generative adversarial networks (Goodfellow et al., 2014; Donahue et al., 2019; Kumar
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et al., 2019), with the most notable example being HiFi-GAN (Kong et al., 2020a),

which has shown to excel at the spectrogram inversion task. The development of

neural audio compression models such as SoundStream (Zeghidour et al., 2021) and

EnCodec (Défossez et al., 2022) produce waveforms directly using a residual VQ-VAE

(van den Oord et al., 2018). The residual codebook entries from the latent space can

be used as tokens for discrete language modelling. Neural codec language models have

enabled long form audio generation across speech, audio, and environmental sound

(Kreuk et al., 2022; Agostinelli et al., 2023; Rubenstein et al., 2023; Vyas et al.).

Diffusion has also been introduced to audio diffusion through spectrogram diffusion

(Hawthorne et al., 2022; Huang et al., 2023b; Liu et al., 2023a; Huang et al., 2023a;

Chen et al., 2023a), which uses diffusion models to generate spectrograms which can

subsequently run through a spectrogram inversion model such as HiFi-GAN.

Combining audio and visual is a nascent area of research, with approaches

using either modality as a conditioning signal for the other. Iashin and Rahtu (2021)

and Sheffer and Adi (2022) both condition generated audio on images using combi-

nations of VQ-VAE and Transformer models. Bigioi et al. (2023) conditions video

outputs on speech commands to enable vocal editing of generated video. A common

approach is to modify an existing video by conditioning the original on an input sound

(Lee et al., 2023a; Jeong et al., 2023), allowing different environments and effects to

be added to the source video. Liu et al. (2023b) study the problem of simultaneously

generating audio and video in a unified approach.
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Chapter 3: Datasets and Data Collection

Both image and caption generation from music relies on paired music-visual

data, making music videos a natural fit to the problem. Music videos can be described

as a flow of images chosen by human creators chosen to accompany music. In many

cases, can be used to highlight the emotional content of the song, with choices being

made across content, coloring, and mood to match the song. While this holds true in

many cases, there are also music videos which arbitrarily create images given music,

making music videos a noisy data source. In this chapter, I report the data used

throughout this thesis, using Gebru et al. (2021) as guidance.

Throughout the following chapters, I use two datasets to develop the various

models or combinations thereof. The first dataset is YouTube8m-MusicVideo (YT8m-

MV) as described in Suris et al. (2022). This is a subset of YouTube8m (Abu-El-Haija

et al., 2016), a large video dataset consisting of 500K hours of multi-label video. The

primary motivation of YouTube8m is as a benchmark and training data for video

classification tasks, collected, maintained and released by Google. By default, the

dataset provides frame-level features and labels of both the video and audio data. To

recreate YouTub8m-MusicVideo, I search YouTube8m for videos classified as music

videos, and save the video ID and download the associated video from YouTube. As

the dataset lives on YouTube, the final YT8m-MV dataset should have high overlap

with Suris et al. (2022), but may also be missing videos which have been removed for

various reasons.

While YT8m-MV is a large dataset, it skews heavily to videos of performers,

people lip-syncing popular music, people performing covers, or generally low-quality

data. Examples of low-quality include low-resolution video, low-fidelity audio, and

video with artifacts introduced from antiquated media formats or methods attempting

to bypass content filters. To fill this gap, I create the AnimatedMusicVideo (AMV)

dataset for this work. This dataset seeks higher-quality data by focusing on animated
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music videos under the assumption that animations are often created with more

intention and artistic interpretation of the source music. This assumption holds for

most of the dataset, but there are still low-quality examples with video game footage

being paired to music being a prime example. Removal of the majority of such low-

quality examples is possible through automated filtering, but full removal of all low-

quality examples would take significant effort. Videos for this dataset were collected

in November 2023 by searching and collating playlists of animated music videos on

YouTube. Before processing, videos are deduplicated by video ID as well as title and

artist matching. At the end of collection and preprocessing described below in section

3.1, AMV’s train split contains 31K examples, representing 86 hours of music and

YT8m-MV contains 72K examples representing approximately 200 hours of music.

After collection, both datasets are processed by dividing the video into 10-

second clips and sampling randomly from that list. As YT8m-MV is a much larger

dataset, I randomly sample four clips from each video, while sampling eight clips

from each video for the AMV dataset. For each clip, a frame is chosen at random

to characterize the video data and the 10-seconds of audio is summed to mono and

normalized. This processing step provides music-image pairs with which to train the

models throughout this work. The video id and time span is also saved with each

example, so the original video is recoverable at evaluation time. Both datasets are

divided into train and evaluation splits before the chunking process to ensure each

model never sees any information from evaluation data. It is probable that the two

datasets contain some overlap, but with most training they are kept separate.

It is important to note that the data collected and used throughout this process

contains the creative work of scores of individuals as well as copyrighted material.

Moreover, much of the visual data in YT8m-MV contains images of people, some

of which may be overrepresented in the dataset. As a lone researcher, it would be

impossible to seek informed consent from all the individuals who have contributed to

the content in this dataset. As a result, the neither the created datasets nor models

derived from the data will be distributed in part or as a whole as a result of this
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BLIP2 Prompts "Describe this image", "Does this image have a particular style?", "Give
a short generation prompt for this image"

Mistral-7B Prompt Your task is to infer a a short image generation prompt for Stable Diffusion
given a description of music and an accompanying image. Here are some
examples of Stable Diffusion prompts:

PROMPT_EXAMPLES

Describe a Stable Diffusion prompt using the following descriptions in less
than 70 words. Do not prepend with any additional information, just re-
spond with the prompt. Do not use words such as "create", "image:" or
"generate" at the beginning of the prompt. Do not use anyone’s proper
name or refer to any artists in the generated prompt. Only create a prompt
for the image, do not make a prompt for the music. Here are the descrip-
tions:

Table 3.1: Prompts from BLIP2 and Mistral-7B used in the captioning pipeline for
the AMV dataset. YT8m-MV prompts are similar, but lack language which refers
to descriptions of music. PROMPT_EXAMPLES is replaced with 5 examples drawn at
random the DiffusionDB dataset.

work. Both models and metadata from the datasets can be provided upon request to

researchers for verification of results.

3.1 Music Video Caption Generation

In chapter 5, I describe an approach which modifies the music captioning task

to provide captions of images which may accompany the music. To my knowledge,

there is no such dataset of music and image caption pairs. To cover this gap, I

create synthetic captions for both YT8m-MV and AMV. While the process is largely

the same for both datasets, there are slight differences in the processes for creating

captions for each dataset. Since AMV is a much smaller dataset than YT8m-MV, I

was able to iterate on the synthetic captioning task, as well as inject more information

into the captioning process. Despite the differences in the approach, the final synthetic

captions do not significantly differ in terms of quality.

Common to both approaches is an image captioning and summarization task

performed to create synthetic captions. For the initial captions, I prompt an instruct-

17



Dataset CLIPScore (↑) B-CLIPScore (↑)
YouTube8m-MusicVideo 0.2717 –
AnimatedMusicVideo 0.2863 0.1612

Table 3.2: CLIPScores for the captioning process in either dataset. The captioning
process results in a low CLIPScore, suggesting low correspondence between generated
captions on the source image. B-CLIPScore reports the CLIPScore between the
intermediate inferences generated by BLIP2 in captioning pipeline.

fine-tuned BLIP2 model (Li et al., 2023a) to extract information about the image.

The extracted data is fed through InstructMistral-7B (Jiang et al., 2023), with in-

structions to use the information to create an image prompt to generate a similar

image. The process for AMV is supplemented with musical information derived from

LP-MusicCaps (Doh et al., 2023) to provide descriptions of the music with the goal

of increasing correspondence between music and the final image. I show both families

of prompts in table 3.1. Not including this information in the YT8m-MV is primarily

due to computational and time constraints.

Table 3.2 shows the CLIPScore (Hessel et al., 2022) between the generated

captions and the ground truth images. This metric is bound by zero and one, with

one meaning perfect correspondence between the source caption and the image. The

lower score suggests a significantly less than ideal amount of semantic overlap between

the captions and the source images. Interestingly, I expected AMV to perform lower

than YT8M-MV on this metric, as the generated caption is prompted with both

music and image information, but this is not the case. Moreover, the CLIPScore has

a wide variance over the captions, with the minimum and maximum scores on YT8m-

MV being 0.7570 and 0.4012, respectively. Interestingly, the CLIPScore between the

BLIP2 inferences and ground truth images averages 0.1612, which is consistent with

the captioning ability reported in the BLIP2 paper.

Figure 3.1 displays a few samples drawn from the AMV dataset with their

associated source video links and captions. This tells a slightly different story than

the pure CLIPScore. While the CLIPScore may suggest a low correspondence, the

images in the figure have somewhat appropriate captions for the scenes. However,
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Figure 3.1: Randomly drawn samples from the AnimatedMusicVideo dataset. Each
item has been center-cropped to fit on the screen. From left-to-write the associated
YouTube video and caption are as follows: (1) https://youtube.com/watch?v=
YX4glq6llMg Generate a vintage living room scene in black and white. Three chairs
arranged centrally, two sofas flanking either side, an armchair by the fireplace, and a
television visible on a dresser. (2) https://youtube.com/watch?v=MneRtx7x2vs A
whimsical scene of two formally dressed individuals exchanging vows amidst vibrant
floral arrangements. (3) https://youtube.com/watch?v=VJm7IPrBmLY Cartoon
scene: A purple and pink suitcase floats among various objects in vibrant waters teem-
ing with seagulls and an inflatable boat. Synth accordion plays harmoniously along-
side a cheerful retro dance beat. (4) https://youtube.com/watch?v=YX4glq6llMg
Generate an image of a mystical nighttime forest, filled with towering trees and lush
greenery. Shadows dance among the foliage as unseen creatures rustle in the un-
derbrush. Birds fly silhouetted against the moonless sky, their calls adding to the
enchanting ambiance

as in the first and third examples, images can be abstract, leading the model to

compensate through hallucinations. More examples from both datasets are presented

in Appendix A. In general, the captions do a decent job of capturing the main concepts

from the presented images. In some cases, the summarization model may misinterpret

background details, as in the fourth example, or it may pull details from the music

caps inference when present as in the third example. Another common failure case

for the captioning process is creating a prompt with multiple options for the prompt,

where the model outputs prompt A, followed by the word ’or’ and prompt B.
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Chapter 4: Image prompts from lyrics: multi-turn
LLM interaction for image generation from music

In this chapter, I will discuss the currently deployed approach of image gen-

eration as performed by Vibe Video. The overall approach described in this chapter

was largely developed by Ben Gillin for Vibe Video. My contributions to this work

are primarily refinement, analysis, and engineering efforts to deploy the pipeline as

an app which is currently available for interaction at https://app.vibevideo.ai.

As such, this chapter will remain brief, but acts as a baseline for other approaches

described in this paper.

The primary benefit of a multi-turn interaction approach is that is largely

model-agnostic. While the currently deployed pipeline utilizes APIs provided by

OpenAI and StabilityAI, the approach is easily adaptable to other models and APIs.

As an example, we have witnessed wildly different outputs from the same prompts

when provided to Stable Diffusion (Rombach et al., 2022) versus Midjourney1. More-

over, outputs at each stage of the pipeline can be provided and curated by the user,

lending itself to a more interactive creative process. Inferences can be modified to

better match user preference and hallucinations can be corrected before moving into

subsequent stages in the pipeline. The LLM interaction also lends itself to other

modalities. The approach can easily be adapted to create images for stories, poetry,

or any other long form text. Despite these benefits, this approach solely relies on lyrics

from music, which ignores the contextualization which comes from the surrounding

music. This approach, therefore, cannot be used on instrumental music which lacks

lyrics. This limitation and others are further discussed in section 4.3.1.
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Figure 4.1: Flow of the multi-turn interaction. Lyrics are first extracted by a Whisper
model from a musical input. The lyrics are used in a multi turn interaction with a
large language model to synthesize a prompt for an image generation model, which
in turn produces an image capturing the vibe of the music.

4.1 Multi-turn LLM interaction

The multi-turn interaction begins with the lyrics of a song. The lyrics can

either be provided directly by the end user, but if the user provides audio, we extract

the lyrics using Whisper (Radford et al., 2022)(Gandhi et al., 2023), which provides

other useful information such as approximate time-stamping of the lyrics. The lyrics

are then fed into a LLM with instructions to extract global information about the

lyrics. The data extracted from the extractive prompts are injected into the final

prompt to ensure similar style across multiple image generations. This approach

could be further extended with cross-attention control (Hertz et al., 2022) to control

stability between successive images, though this would remove the model-agnostic

guarantees of the interaction. The final outcome of the multi-interaction is an image

generation prompt which can be provided to any diffusion model to generate an image

or video artifact.

4.1.1 Extractive Prompts

The first step of the interaction process is to extract global semantic informa-

tion from the lyrics. For the rest of this chapter, these prompts will be referred to as

extractive prompts and outputs from the process will be referred to as image prompts

1https://midjourney.com
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Prompt Goal System Prompt User Prompt
Thematic Content Suggest a theme and style for this

song in a short paragraph. The
theme should be a general idea or
concept that the song conveys, and
the style should be a visual style
that would best represent the song.

$SONG

Visual Vibe Given the theme and song, suggest
a vibe which best captures the feel-
ing of the song.

Theme: $THEME Song: $SONG

Color Palette Infer a color pallete that would
work well with the theme, style,
and vibe. Make your responses as
concise as possible.

Theme: $THEME Vibe: $VIBE
Song: $SONG

Visual Metaphor Develop a visual metaphor based
on the provided song, art-style,
and theme in as few tokens as pos-
sible.

Theme: $THEME Vibe: $VIBE
Song: $SONG

Sentiment Infer the main sentiment and emo-
tions of the provided text in as few
tokens as possible

$SONG

Table 4.1: Global prompts used in the current VibeVideo pipeline. Each word
prepended with $ is replaced with the appropriate information. For example, $SONG
is replaced with the lyrics and/or inferences from MusicCaps, $THEME is replaced
with the inference from the Thematic Content prompt, and so on. When used in
an interaction based approach, the system prompts are moved into the user prompt
and the LLM is instructed to refer to the context window rather than providing the
results each turn.

to differentiate the two flavors of prompting in this work. The extractive prompts in

4.1 are used to extract this information in one of two ways. The first method prompts

the LLM in parallel with the prompts as system prompts and lyrics/prior informa-

tion provided as user prompts. Once all extractive prompts receive an associated

inference, they are synthesized into an image prompt. The second method prompts

the LLM in a conversational manner consistent with the expected use of LLM chat

agents. Some of these prompts, such as emotion extraction, are a zero-shot sentiment

analysis task provided to the LLM in use. Others, such as notable themes, are more

open-ended to the LLM. When available, more open-ended prompts are paired with a

higher temperature to encourage more “creative” generations from the LLM. In each

22



prompt, the LLM is instructed to give an appropriate length for the prompt. For ex-

ample, the art-style prompt requires the model to only generate the name of the style

rather than a description of an art style. In this case, the model is asked to generate

n art styles, which are then combined and ranked to provide multiple options to the

user or to downstream prompts.

The prompts currently deployed in the system are found in 4.1. While the

majority of these stand alone, there is some notion of hierarchy within the prompts.

For example, the predicted sentiment output typically changes if the outcome from

emotional content is included in the context. The same is true with art style, the-

matic content, and visual metaphor. In our current pipeline, the output of art style

is provided as an input for the color palette, which assists the LLM produce an ap-

propriate color palette for the outcome. When using a conversational approach, the

LLM is instructed to refer to previous inferences in the context window to interpret

these relations.

4.1.2 Fusion into Image Prompt and Animation Generation

Once all the extractive prompts have been generated, they are infused into

a single prompt by providing a system message as instructions and the extractive

prompts as the initial user message in a LLM interaction. The system message is

integral to controlling the output of the LLM. In our current production system, we

find that ChatGPT tends to produce longer outputs than necessary than our task

requires. As of time of writing, the ChatGPT API does not provide a length penalty

parameter and the max tokens parameter is unreliable as the model will stop mid-

sentence. The current system prompt is as follows:

Generate a prompt for an AI image generator inspired by the provided
information with less than 75 output tokens. Be creative and do not men-
tion lyrics in your response. Do not use phrases such as “Create an image”
or “Generate an Image.” Do not describe the metaphor or symbolism of
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Figure 4.2: Images generated from the LyricToImage pipeline. For each image in the
set, lyrics transcribed from source audio is provided to a LLM. The LLM is prompted
to derive information relating to possible themes, art styles, sentiments, etc from the
lyrics. The LLM is then asked to synthesize an image generation prompt using the
information. The generated prompt is then fed into Stable Diffusion 2.1 for image
generation.

choices, simply describe what the generated image should look like. Do
not use the following words: ...

The word exclusion list has been truncated for brevity, but is necessary to prevent

generation of prompts which may trigger NSFW filters in image generation models.

Once the final prompt has been generated, it can be used with any current image or

video generation model to produce a visual artifact which has overlap with the input

music.

4.2 Evaluation

While this approach was developed ad-hoc iteration over time primarily us-

ing qualitative evaluation, in this section I will describe evaluations I applied to this
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approach. These evaluations are my primary contribution to the lyric to prompt

approach. Proper evaluations grant a baseline for other approaches discussed in

chapters 5 and 6 while spurring development of generating prompts from lyrics by

giving objective measurements between iterations. As this is a creative task, quanti-

tative evaluations can be tricky to clearly define. For example, is a high measure of

similarity between lyrics and prompts preferable, or would it be better to optimize

towards a lower score? Such questions suggest quantitative measurements are largely

suggestive and open to many interpretations.

The multi-turn interaction from lyrics to prompt with the LLM in L2I is

similar to a summarization and synthesis task. To measure the effectiveness of LLM,

I report ROUGE (Lin) and BERT (Zhang et al., 2020) scores between the lyrics and

generated extractive prompts, as well as the final prompt given to an image generator.

These scores are open to interpretation when applied to questions of quality of the

final output. To measure the extent of how much a generated output looks like

a reasonable image generation prompt, I report the Jaccard distance between the

body of outputs and a sampling of the DiffusionDB dataset (Wang et al., 2023b), a

collection of over 2 million human-generated prompts for Stable Diffusion.

I should note that these evaluations are a slight abuse of the ROUGE and

BERT scores, and they should not be interpreted as a measure of quality of these

models. While the task is similar to a summarization, it is not necessarily preferable

for the model to simply summarize lyrics. A certain amount of creativity in each

output can result in more interesting final outcomes. The measurements provided

by both BERT and ROUGE are instead used to measure similarity between different

stages of the interaction pipeline. Furthermore, they are useful when comparing the

performance of different models to get a sense of the tendencies of each model in

the pipeline. Finally, they could also be used to determine the effect of tweaking

individual extractive prompts, though I leave that to future work and do not perform

that analysis here.
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LLM Theme Vibe Color Metaphor Sentiment Lyrics
GPT4 Conversational 0.855 0.858 0.866 0.885 0.848 0.776
GPT4 Parallel 0.856 0.859 0.867 0.887 0.846 0.776

Table 4.2: BERT F1 scores on conversation-based flow and parallel prompting. There
is no significant change in inferences between the two approaches.

4.3 Analysis

To understand the interaction between the final image prompt and extractive

prompts, I report the BERT scores in table 4.2 between the final prompt and the

extractive prompts and lyrics. Additionally, I report the difference between prompt-

ing GPT4 in a parallel vs conversational manner. The two approaches are measured,

as it has been easier to prompt other models using a conversational manner rather

than building unique interactions for each prompt. As seen in the table, there is no

significant difference between prompting GPT4 in a conversational vs parallel man-

ner, suggesting the two approaches can be considered identical. The conversational

approach has the benefit of using a LLM’s context window as a store of information,

whereas the parallel approach must be provided with dependent information for each

prompt. The parallel approach has the main benefit that multiple independent ex-

tractive prompts can be provided simultaneously, speeding up latency for the user.

In general, the final image prompt shows the lowest dependency on the input lyrics,

and a higher dependency on the extractive prompts. This shows the model is placing

a higher importance on information extracted from the lyrics rather than the lyrics

itself. The highest dependency is on the visual metaphor prompt.

Another point of interest to this approach is the performance of different lan-

guage models on the L2I task. For this comparison, I run pipeline using GPT4,

LLaMa-2-7B (Touvron et al., 2023), and Mistral-7b (Jiang et al., 2023) as the LLM.

Table 4.3 reports results between different language models. In general, GPT4 tends

to focus on the visual metaphor more than other extractive prompts. This makes

sense as the visual metaphor is typically the culmination of the previous extractive

prompts. However, Mistral shows a tendency to spread its focus out, drawing on in-
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LLM Theme Vibe Color Metaphor Sentiment Lyrics Mcaps
ROUGE-L

GPT4-L 0.144 0.151 0.201 0.291 0.099 0.046 –
GPT4-M+L 0.132 0.139 0.192 0.261 0.095 0.042 0.108
Mistral+L 0.182 0.185 0.169 0.220 0.098 0.048 –
Mistral+M+L 0.184 0.191 0.171 0.221 0.093 0.049 0.120
LLaMA+L 0.224 0.229 0.185 0.253 0.099 0.079 –
LLaMA+M+L 0.220 0.233 0.181 0.257 0.100 0.079 0.138

BERT F1
GPT4-L 0.856 0.859 0.867 0.887 0.846 0.776 –
GPT4-M+L 0.851 0.856 0.865 0.881 0.845 0.774 0.835
Mistral+L 0.872 0.871 0.864 0.881 0.851 0.777 –
Mistral+M+L 0.872 0.871 0.862 0.879 0.848 0.775 0.840
LLaMA+L 0.865 0.862 0.837 0.870 0.833 0.774 –
LLaMA+M+L 0.864 0.862 0.836 0.870 0.834 0.774 0.832

Table 4.3: ROUGE-L (top) and BERT (bottom) scores measuring final prompt de-
pendence on global prompts, input lyrics, and MusicCaps inferences. Results are
shown for prompts derived using lyrics (+L) or using MusicCaps inferences and lyrics
(+M+L). The ROUGE-L metric provides insight in to how much language is re-
peated from each input source. The BERT metric measures the similarity between
the prompt and input source.

formation across the extractive prompts. This is reflected through a lower ROUGE-L

and BERT score for the visual metaphor, with increases in the scores for theme and

vibe. LLaMA-2 is more likely to repeat language than the other models as seen in the

ROUGE-L score for the theme, vibe, and visual metaphor. As a result, its focus is

shared more evenly across the extractive prompts. Across the board, there is a lower

similarity between the lyrics and final prompts, suggesting the models are relying

more on the extractive prompts rather than the input lyrics.

In table 4.3, I show the pairwise BERT scores between the extractive prompts,

lyrics, and music caps inference if it was used for production of the output prompt.

This provides an intuition on the inter-prompt dependencies. There is no significant

movement in the BERT scores with the introduction of the MusicCaps across the

board. However, MusicCaps interactions have a slightly lowered dependence on the

lyric score as shown with a consistent decrease in the lyric column. As prompts are

dependent on each other through the prompting flow, this chart is as expected. For
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Figure 4.3: Pairwise BERT Score for all global prompts. For better scaling, the
diagonal and unused features have been pushed to 0 rather than keeping them at 1.
On the left is inferences generated without use of the MusicCaps inferences. On the
right shows scores when MusicCaps is incorprated into the LLM interaction.

example, when the model is prompted for a color palette, it is given both the theme

and the vibe as context, where the sentiment prompt is only given the lyrics. It is

important to note that using BERT Score in this manner is an abuse of the metric.

4.3.1 Drawbacks and Limitations

While the current multi-turn LLM interaction creates interesting results, the

method is far from perfect and contains drawbacks and Limitations which motivate

the remainder of this thesis. Perhaps the most glaring limitation is the reliance on

lyrics for guidance towards visual generation. Lyrics by themselves can contain high

emotional content, but do not complete the song. The emotional content of lyrics

themselves can change depending on the framing which instrumental music provides.

There are many songs and entire genres of music which do not contain lyrics for which

this process will fail.

The reliance on external APIs for generation is a double-edged sword for any
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kind of service. On one hand, swapping out better performing products for old prod-

ucts is a quick process, necessitating only a simple library switch and fine-tuning of

system-level prompts. However, service APIs can change in cost and quality with-

out warning. While the current trend is for inference costs to decrease, this is often

accompanied by rate limits and higher costs for higher rates of inference. The dis-

tribution of outputs from a model can change from weight updates, which are often

opaque to the end user. Notably, studies suggest ChatGPT’s performance on tasks

changes over time (Chen et al., 2023b), which can affect the stability of outputs in

our pipeline. Such issues have a downstream effect on any core product which utilizes

these services.

Once the final prompt has been generated, it is fed directly into an image

generation model to provide a visual artifact which matches the semantic qualities

of the lyrics. The major challenge in this process is creating image prompts which

are an appropriate length for the image model. For example, due to reliance on the

CLIP (Radford et al., 2021) text encoder, Stable Diffusion can only utilize image

prompts of 77 token or less. Outputs from the multi-turn process often go over this

limit causing much of the prompt to be truncated. Longer prompts may therefore

contain important information which may never be considered by the image generator.

To some extent, simple engineering tricks can mitigate this issue, but condensing

information into as few tokens as possible still results into computational efficiencies

at scale.

In this chapter, I describe a method using interaction with a LLM to extract

information from lyrics and use that information to synthesize a prompt for an image

generation model. This approach benefits from being model agnostic and training

free. Analysis shows that the pipeline typically results in images which are related to

the source lyrics. However, the multi-turn approach can be slow and dependent on

external resources, which can be undesirable for reasons above. In the next chapter,

I address these issues by bypassing the multi-turn aspect and casting the problem as

a music captioning task.
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Chapter 5: Image Prompts from music: music
captions as image descriptions

Many of the limitations of the LLM interaction approach described in chapter

4 can be avoided by finding a single model which can produce appropriate descriptions

of images directly from music. Such a model would provide lower latency and avoid

risks of quality drift of external APIs. In this chapter, I build a model which given

an audio input produces a description of an image to accompany the image. While

the desired outcome is an image description, this work can still be considered a music

captioning task (Won et al., 2021; Doh et al., 2023). Prior work has been in finding

appropriate music to match images (Suris et al., 2022) or to retrieve related images

and music (Wu et al., 2022; Stewart et al., 2023). This work differs as it produces a

description of the image as a prompt for image generation which can be used to find

existing footage or to generate images.

5.1 Music Captioning

The audio captioning problem is a simple formulation: given an audio source,

generate a caption which describes the audio. This task has benefitted from the release

of the AudioCaps and Clotho datasets (Kim et al., 2019; Drossos et al., 2019), with

provide many audio-natural language pairs. AudioCaps is much larger and is gen-

erated using captions synthesized from AudioSet (Gemmeke et al., 2017) tags, while

Clotho contains higher-quality human generated captions. A similar approach for

music is MusicCaps (Doh et al., 2023), which synthesizes music captions by prompt-

ing a LLM with tags retrieved from the Million Song Dataset (Bertin-Mahieux et al.,

2011) before being fine-tuned on a high quality internal dataset of human annota-

tions. While general audio captioning has a variety of approaches (Mei et al., 2021,

2022; Deshmukh et al., 2023), models solely focused on music remain limited.
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Figure 5.1: Generalized architecture of Music 2 Prompt models. An off-the-shelf
audio encoder is used to create embeddings to be fed into a cross attention layer of a
causal language model.

To my knowledge, there exists no dataset of music with accompanying images

and image descriptions. As a result, I build the two datasets of music videos as

described in 3 primarily for this and the music-to-image task described in chapter 6.

These datasets rely on synthetic captions, which inherently limits the effectiveness

of the model. As seen in 3.2, the CLIP score of these datasets leaves much to be

desired. Moreover, any biases introduced by the models in the captioning process will

be amplified by this model.

With these datasets, I train an encoder-decoder network with cross attention to

produce prompts given a clip of music on the music2prompt (M2P) task. Given a clip

of music, x, I first encode the audio with an off-the-shelf audio model, E to produce a

representation, E(x) = z. This representation is fed into an initialized cross-attention

layer in a text decoder model, D, which then autoregressively predicts a string of

tokens, ŷ using a cross-entropy loss

L = −
T∑
t=1

log pθ(yt|y1:t−1, x) (5.1)

For the encoder, I choose MERT (Li et al., 2023b) and Audio Spectrogram Trans-
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former (AST) (Gong et al., 2021a) as the audio encoders. The former is HuBERT-

like audio encoder trained specifically on music and shows good generalization across

multiple MIR tasks. Like HuBERT (Hsu et al., 2021), MERT learns through self su-

pervision while iteratively clustering similar latent representations into clusters which

are assigned labels. I report results on both the 95M parameter and 330M parameter

model variants. In addition to the difference in their parameter sizes, the 330M model

was trained on 160k hours of music, whereas the 95M model variant was trained on

a 1k hour subset of the full dataset. AST is trained on general purpose audio and is

a common choice as an audio encoder. Following the implementation of MusicCaps

(Doh et al., 2023), I introduce cross attention to RoBERTa (Liu et al., 2019), casting

it in the role of the decoder in an encoder-decoder set up.

5.2 Evaluation

To maintained comparability with the lyric-to-prompt task, I report many

of the metrics as described in section 4.2. For each inference in the evaluation set,

I report ROUGE and BERT scores between ground truth and generated captions.

Where available, I further report the ROUGE and BERT score pairwise between

the generated captions and intermediate information generated by MusicCaps and

BLIP2 in the caption synthesis pipeline. These metrics provide insight into what

aspects of the captioning pipeline are most important for the final output to inform

further development of the M2P approach. To compare the performance of the model

in producing outputs which appear to be image prompts, I also report the Jaccard

distance between outputs and DiffusionDB. As the final goal of this approach is to

create images which correspond to the music, I show examples in 5.2.

As in the previous evaluations, these metrics are open to wide interpreta-

tions and may not directly indicate quality of outputs. Instead, they provide a good

insight into relative performance of the different approaches. In some regards, the

Lyric2Prompt baseline is not directly comparable to the Music2Prompt model. Lyrics
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Figure 5.2: Example images generated from prompts created by the RoMERTa-95M
models. The top two rows are from the model variant trained exclusively on Animat-
edMusicVideo, while the bottom rows are trained on YT8m-MV. The distribution
of the underlying datasets is apparent in the examples. the AMV variant generates
exclusively animated images whereas the YT8m-MV variant his a high propensity for
prompting images of people, following the high occurrence of people in the dataset.
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Model ROUGE-1 ROUGE-L BERT-F1 J-Sim CLIP
RoMERTa-95M-AMV 0.216 0.178 0.866 0.089 19.2
RoMERTa-95M-YT8m-MV 0.232 0.184 0.864 0.076 18.2
RoMERTa-330M-AMV 0.209 0.177 0.864 0.075 18.2
RoMERTa-330M-YT8m-MV 0.232 0.188 0.865 0.074 17.7
ASTRoBERTa-AMV 0.214 0.176 0.867 0.087 18.6
ASTRoBERTa-YT8m-MV 0.181 0.151 0.860 0.0788 14.7

Table 5.1: Scores for the music to prompt task. The model names denote the model
formation and the dataset used for training and evaluation. All models have relatively
similar performance on the metrics shown. A consistently low J-Sim score suggests
generated prompts do not look similar to human made prompts, which is consistent
with qualitative analysis.

represent global information which can generally be considered to stay consistent

throughout a song. The M2P models are provided 10-second clips as their input, and

therefore rely on local information to generate the prompts. Moreover, lyrics may

convey a different mood or timbre than the music to increase dramatic effect, which

could inject more noise into the process.

5.3 Results

Table 5.1 scores for each of the models. Across all MERT models, the scores

do not differ in any significant way. The results for AST are less consistent with

a major drop across all metrics between the two datasets, though the results on

ASTRoBERTA-AMV are consistent with the MERT models. Here, the reported

CLIP score is significantly lower that the score reported in Table 3.2, suggesting the

generated prompt’s dependence on the image has decreased with the introduction

of an audio encoder. The ROUGE Scores show a low correspondence between the

predicted and source captions, though it is not insignificant. The examples in ta-

ble 5.3 show high disparity between the source and generated captions, suggesting

the ROUGE-1 score is mainly capturing connecting words and articles. Despite the

disparities, the models report a strong BERTScore, suggesting a tenuous relation

between the source truth and predictions.
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Figure 5.3: Effect of temperature on M2P inferences. As is the case with language
models, increasing the temperature increases the diversity of the output. In this
case, increasing temperature shifts the outputs towards the distribution of human-
like Stable Diffusion prompts without significant drops in the BERT score. Moreover,
larger MERT models appear to be more robust to changes in temperature than the
smaller models, which drop in BERT F1 at a faster rate.

The examples generated in table 5.3 were generated with temperature, τ = 1.0,

resulting in repetitive language. For example, the word whimsical shows up many

times in the generated examples; anime-style and cartoon are common prefix descrip-

tors of any characters described within a prompt. This is even more pronounced in

the model variants trained on the YT8m-MV dataset, reflecting the prevalence of

human performers in the dataset images. I report the effects of temperature in figure

5.3. Rouge-L scores have an inverse relationship with the increase in temperature,

suggesting increased diversity in the generated prompts, which is expected. Larger

parameter models appear to be more robust to changes in temperature in terms of

similarity to the ground truth, supported by the BERT score remaining fairly consis-

tent for the 330M models, while falling for the 95M models. Finally, all models enjoy

a significantly higher Jaccard score as temperature increases, though the distance

between DiffusionDB and model outputs remains large. Future work could consider

pretraining the RoBERTa model on the DiffusionDB dataset to encourage a higher

Jaccard similarity score.
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Cartoon characters gathered in a trio, two on the left and one on the right.

Generate an abstract image with a dark background adorned with intricate red line patterns, remi-
niscent of an R&B/pop scene with a masculine vocalist and a melodic keyboard melody. Incorporate
subtle shapes and textures into the design, enhancing the sense of movement and depth.

A young girl in purple clothes sits cross-legged before a sunlit window, gazing thoughtfully at an
unseen object. Bookshelves line the room, filled with colorful volumes and trinkets. A small dog
naps peacefully nearby.

Anime-style woman with red hair and blue eyes, gazing directly at the viewer against a vibrant,
abstract backdrop, surrounded by geometric shapes and vibrant colors.

Anime character in a chair, arms outstretched, wearing glasses and surrounded by abandoned books.

Table 5.2: Example caption outputs for the RoMERTa-95M-AMV model. More
examples are provided in Appendix B

.

Qualitatively, the M2P generates reasonable prompts from the music inputs,

following the data it was trained on, as seen in the examples in figure 5.2. However,

the generated prompts result in low quality images across the board. This is partially

due to the image generation model, however, many examples of high quality images

exist from the same model exist online. As in the LLM interaction approach, the main

benefit arises from the generated prompt being editable before being fed to an image

generation model. Moreover, a natural language prompt is largely agnostic of the

image generation model, and can be tailored to individual image generation models

through human editing or further fine-tuning. Rather than producing a prompt, this

model could easily be modified to produce image captions. This modification would

allow these models to easily be rolled into the current Vibe interaction pipeline.

The M2P models are largely limited by the amount of data collected for their

training. Other multimodal captioning models learn on data orders of magnitude

larger than the datasets I have used throughout this process. For example. BLIP2

was trained on 129 million images (Li et al., 2023a) and MusicCaps was trained on over

4000 hours of music. As with all models in this thesis, the greatest boon to improving
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the quality of captions produced from the various M2P models. Furthermore, higher-

quality data is also necessary for better results. As seen in 3.2, the CLIPScore of the

dataset is relatively low, suggesting the captioning process leaves much to be desired.

Following the results from MusicCaps (Doh et al., 2023), a small set of higher quality

prompts could also improve the final output of the model. In MusicCaps, the authors

first trained on synthetic data before fine-tuning their model on high-quality human

annotated music.

Training on music videos pulled from YouTube also opens the model up for

generating prompts centered around copyrighted images or known people. Despite

my best efforts remove such examples from the dataset, examples of known work

persisted in the underlying datasets. As a result, when generating results for the

models, references to Pokémon, video game characters, and musicians have occurred

in generations. Such information is known to captioning models used to create the

synthetic data used for training this class of models. Future work would need to

improve the captioning process, as well as improve filtering known imagery prior to

training time.

This chapter addresses the limitations presented in 4.3.1 by generating image

prompts directly from music inputs. By conditioning a RoBERTa model on outputs

from an audio encoder, the model learns image prompts from synthetic data, creating

reasonable prompts given a musical input. While this process is highly data limited,

it benefits from ease of implementation and directness of the approach. In the next

chapter, I take the core idea of this chapter one step further and fine tune a Stable

Diffusion model to directly generate an image conditioned on embeddings from an

audio encoder.
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Chapter 6: Music to image, conditioning
text-to-image models with music

Both of the approaches outlined in chapters 4 and 5 rely on a multistage

pipeline to go from a musical input to some visual representation. In this section, I

consider closing the gap from music to image generation. The primary goal of this

chapter is to find an end-to-end model which can output an image given audio, text,

or an audio-text pair. Such an end-to-end model addresses many of the issues raised

in sections 4.3.1 and 5.3. Most importantly, it removes the dependency on lyrics and

conditions the output directly on the semantic information of the music. Second, this

removes the dependency on external services, which can degrade or change over time

without warning. An end-to-end model’s quality can be assessed and tuned before

released, and can be further fine-tuned as additional data is collected. This approach

can be further enhanced as information gleaned from the lyrics in previous approaches

can be introduced to this model via text. Ideally, a model trained in this approach

would create images using only text prompts, only audio prompts, or a combination

of both.

In this chapter I describe Music Controlled Imagery (MusCI), a family of

models which attempt to condition image generation on both text and audio inputs.

To my knowledge, there has been no significant work on this problem in literature.

The closest approaches are work which conditions generated audio on video (Iashin

and Rahtu, 2021), generating Foley sound from video (Yuan et al., 2023), modifying

video with environmental sounds (Lee et al., 2023a), generating sound alongside video

(Liu et al., 2023b), controlling video with speech (Lee et al., 2023a), or audio-reactivity

(Lee et al., 2023b; Jeong et al., 2023).

Generating images from music has a number of significant challenges. First,

high quality image generation is a function of both algorithms and data scaling. As in
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language modeling, extremely large internet-scale datasets are used to train modern

diffusion models, which puts such capabilities out of reach for most academic research

labs. To condition generative models on a secondary modality may require a similar

scaling of data in that modality. While video creates a large pool of music-image

pairs to draw from, the quality of such data is unclear. While copyright-free music

is available for training large generative music models, video is typically paired with

copyrighted music, making development of such models difficult. A second difficulty

is the diversity of the available data. In general, music videos skew heavily towards

images of people playing instruments, with a long tail of truly unique inputs. Such

a narrow grouping of training data could skew the outputs of a model towards such

images. Third, the association between details or objects in images and music inputs

is tenuous at best. While music is often described in terms of imagery, these are

highly subjective and hard to quantify. For example, what snippet of music should

be interpreted to be a picture of an astronaut riding a horse?

6.1 Extending Stable Diffusion Conditioning to Audio

MusCI seeks to condition a Stable Diffusion (Rombach et al., 2022) model on

audio embeddings retrieved from a music representation model. Stable Diffusion first
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Figure 6.1: Examples of the conditioned stable diffusion model. Top two rows arise
from the model fine-tuned on the AMV dataset, while the bottom two rows are from
the model fine-tuned on YT8m-MV.

trains a neural image compressor based on an autoencoder. Given an image x, the

encoder, E, compresses an image into some latent space z = E(x). The decoder, D, is

trained to reconstruct the image, x̂ = D(z). In contrast to earlier works, the diffusion

process is then trained on the latent space with the following objective:

LLDM := Ez,ϵ∼N(0,1),t

[
||ϵ− ϵθ(zt, t)||22

]
(6.1)

where zt is a noisy version of z and some timestep t, and ϵθ(·, t) is a time-conditional

UNET (Ronneberger et al. (2015) as cited in Rombach et al. (2022)). To condition the

final outcome on some other modality, they preprocess input y using an appropriate

domain-specific encoder τθ to project the conditioning modality into the space of
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a cross attention mechanism. Given the conditioning input, the training objective

becomes

LLDM := Ez,y,ϵ∼N(0,1),t

[
||ϵ− ϵθ(zt, t, τθ(y))||22

]
(6.2)

where both τθ and ϵθ are jointly-optimized by this objective.

In this section, I describe MusCI-CLAP, which uses CLAP-music as the audio

encoder to condition the image generation model. This model works on a simple

general principle: given a music and text pair, produce an image which captures

the qualities of both inputs. Formally, given a text, music pair, (yT , yM), I encode

each with a modality-specific encoder, τ∗ with a learnable linear projection layer to

project the encodings into a common dimensionality. The two encodings are then

concatenated into a single conditioning signal, T(yT , yM) = (τT (yT ), τM(yM)). The

learning objective described in equation 6.2 is modified to give the general learning

objective for these approaches:

LM2I := Ez,(yT ,yM ),ϵ∼N(0,1),t

[
||ϵ− ϵθ(zt, t,T(yT , yM))||22

]
(6.3)

For all three approaches, the primary difference is the audio encoder under study and

the text encoder remains the CLIP Text tokenizer (Radford et al., 2021) as fine-tuned

by the Stable Diffusion model.

MusCI-CLAP addresses the problem by taking the audio encoder of an off-

the-shelf CLAP model (Wu et al., 2023b). The published version of CLAP is trained

on general audio, where music represents a small fraction of the training set. Instead,

I use weights released later which are trained entirely on music and text pairs. During

training, I ensure the CLAP model remains unfrozen to help it adapt to the expected

distribution of CLIP embeddings from the text encoder. I project the Audio embed-

dings into a shape of {N × 10× d} where d is the dimension of the cross embedding

input of the image generation model. These audio embeddings are concatenated with

the outputs of the CLIP text encoder before being fed into the cross embedding layer.

As will be discussed in more detail in section 6.3.1, MusCI-CLAP is able to capture
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some semantic information from the music and produces similar imagery given similar

music inputs. However, the model suffers from an overall decline in quality of images

and is unable to generate without text inputs.

6.2 Evaluation

For this task, I report a number of perceptual measurements commonly used

in image generation models. I report the inception score (IS), which measures the

diversity and quality of the generated images. A higher inception score indicates

higher quality and diversity with the lowest possible value of 1. Fréchet Inception

Distance (FID) also measures quality, but also provides a certain measure of realism.

A lower FID shows that the generated images are close to realistic images, with

high scores indicating unrealistic images. I also report the Kernel Inception Distance

(KID), which attempts to improve over FID by incorporating kernels and unbiased

estimators. Precision and recall is reported between the generated and ground truth

representations. Precision measures the probability that a random generated image

falls within the distribution of ground truth images, whereas recall describes the

inverse relationship.

For all models, I sample prompts and audios from the evaluation split of

AMV and YT8m-MV and generate 25,000 images. Since FID, KID and PRC are

distributional measurements, they require a large amount of source images to be

statistically robust. For these measure, I use images from the AMV and YT8m-

MV train split. Since this introduces some bias in the metrics, I also report the

measurements using the CIFAR-100 train split. Both KID and FID use a classification

model to encode input images and measure their distance and are therefore sensitive to

the feature extractor implementation. For all scores, I report using the torch-fidelity

library (Obukhov et al., 2020) using clip-vit-b-16 as the feature extractor.
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Model IS (↑) FID (↓) KID (↓) Prec Recall
SD-CLAP-AMV 1.069 ± 0.002 7.174 0.0256 ± 0.001 0.122 0.436
SD-CLAP-YT8M 1.084 ± 0.002 17.7936 0.066 ± 0.002 0.096 0.345
SD-2.1 (AMV) 1.006 ± 0.000 46.355 0.258 ± 0.004 0.002 0.004

Table 6.1: Perceptual quality metrics for M2I models with vanilla Stable Diffusion
model as a baseline using the publicly available 2.1 checkpoint. This table reports
the inception score (IS), Fréchet Inception Distance (FID), kernel inception distance
(KID), precision and recall. All but the first are distributional measures which com-
pare against a baseline set of images. For the baseline in this table, the ground truth
frames from the videos are used.

Model FID (↓) KID (↓) Prec Recall
SD-CLAP-AMV 42.522 0.210 ± 0.002 0.004 0.000
SD-CLAP-YT8M 49.843 0.235 ± 0.003 0.006 0.000
SD-2.1 46.181 0.279 ± 0.004 0.001 0.003

Table 6.2: Perceptual metrics as in table 6.3, but using CIFAR100 as the base image
distribution.

6.3 Results

I report perceptual metrics described in the previous section in tables 6.3 and

6.3. The former table reports against the base dataset. In these results, the inception

scores suggest a small, yet insignificant, increase in perceptual quality. Both FID

and KID suggest an increase in quality, but it is important to remember that these

are distributional metrics which depend on the baseline. Comparing these scores

between the two tables suggests that the quality has not greatly improved over the

Stable Diffusion baseline, but rather the model fits closely with the distribution of

training images. This is further supported by the precision and recall metrics which

measure how likely an image was to arise from a second distribution. Both recall and

precision seem to scale with the amount of data used to train the individual models,

with a low score for the base model, which was trained on millions of images, and

a high score for SD-CLAP-AMV which was trained on the least amount of images.

In this context, a lower precision and recall are preferable as they are indicative of

generalizability.
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Figure 6.2: Example of images generated without any text conditioning. Before fine-
tuning, Stable Diffusion has the ability to condition unconditionally, but loses this
ability after being finetuned on audio inputs.

Table 6.3 tells a fuller story of the quality of the models trained in this work.

Both FID and KID remain within a similar range of the stable diffusion baseline. This

suggests the overall quality has not significantly changed from training. This suggests

quality issues may not be entirely the fault of training, but rather from the choice of

foundation model. Further work should study applying the fine-tuning procedure on

other checkpoints or image models.

6.3.1 Qualitative Analysis

Examples of both models are provided in figure 6.1 with more examples pro-

vided in appendix C. In general, fine-tuning Stable Diffusion to condition on Audio

Embeddings as well as text embeddings results in a loss of quality from the base

Stable Diffusion model. When the model generates human beings, they commonly

are presented in bizarre poses, with distorted facial features. Animated images tend

to lose structure, with similar failure patterns seen the generated images. One such

failure pattern is the characters appearing to have been abstracted to an extreme

degree. Scenes of cities have buildings melting into each other, with the foreground

lacking any distinction from the background. In short, the fine-tuning process seems

to amplify the failure patterns of image generation models. Moreover, the model loses

the ability to unconditionally generate images after only a few epochs of training as

seen in figure 6.3.1.
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Figure 6.3: Example showing consistency across prompts given the same source audio.
The text prompts used to generate these images are a highly generic prompt: "an
image of a spaceship flying through space." The provided audio is from different
sections of the same song

I hypothesize the loss of quality in the MusCI models is due to two main

problems. First, the audio embeddings produced by CLAP’s audio encoder arise

belong to a vastly different distribution than the CLIP Text encoder embeddings on

which Stable Diffusion is trained. While a measurement of the exact distance between

the two embeddings is beyond the scope of this work, it offers a reasonable explanation

for image model’s degeneration. Second, training is highly data limited, and I simply

do not have access to the proper scale of data to account for the first issue. Stable

Diffusion and other image generation models are trained on internet-scale amounts

of information. While the exact number of training examples is not published, the

number of training images is orders of magnitude larger than the datasets I have used

for training.

Despite these failures, there is some evidence the conditioning audio has posi-

tive effect on the outcome. Figure 6.3.1 shows one such example. Both of the shown

examples are generated using the same prompt and audio from the same song. The

prompt itself is very generic: “An image of a spaceship flying through space.” Generic

prompts such as this one typically result in high variance in the style of the output

image in the base Stable Diffusion model. These two images show a very similar
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style, despite no stylistic information being provided by the prompt. This suggests

the conditioning audio may be providing consistent style information to the image

generation model.

6.4 Limitations and Future work

The MusCI model is highly limited in its ability. As discussed in the previous

section, their overall quality is much lower than the foundation Stable Diffusion model.

The primary limitation for improvement is the scale of data available for training,

though data scaling itself does not guarantee success of future models. Compared

to the other approaches, this method has the least amount of interpretability. LLM

interactions provide a trace back of decisions which can be modified and influenced

by the end user. Likewise, the M2P model provides a lesser amount by providing a

caption which can be approved, curated, or modified before being fed to an image

model. In this approach, images are created without knowing the exact reason as to

the ‘decision made’ by the model. While the distance from audio to image is greatly

reduced in this method, it is much harder to directly control the output as in other

methods.

Another major limitation comes from the lack of analysis of the correspondence

between music and generated images. As part of the work in this thesis, I made

attempts to create a model which applies contrastive learning to images and music

from the two datasets used throughout this thesis. The resulting inferences of the

trained models were unfortunately too noisy to provide a meaningful metric. However,

work such as Suris et al. (2022) and Stewart et al. (2023) show that models can be

trained in this manner. Such a model is essential to measuring the results of the

MusCI model and would aid greatly in improving this model. Additionally, human

evaluations and preferences for images generated would provide better insight into

the usability and quality of this model. Regrettably, time constraints dictate that

this model is left to future work.
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Finally, other audio encoders and diffusion models should be studied in their

ability to achieve this task. The choice of using CLAP as the model for this task

may not be the best. Further work should explore approaches as introduced by Wu

et al. (2022), which distills an audio encoder to produce CLIP-like embeddings for

audio. Such a model would produce embeddings belonging to a similar distribution

as the CLIP text encoder which the the original Stable Diffusion model was trained

on. This approach has the potential to address the pitfalls of the current model.

Moreover, choosing a different Stable Diffusion checkpoint or architecture would have

further implications for this approach. For example Stable Cascade (Pernias et al.,

2023) uses a novel architecture which greatly speeds up training and inference, which

could speed up iteration. Stable Diffusion XL1 scales up the original Stable Diffusion

Model and generates images of much higher quality than the checkpoint considered

in this chapter, which could assist in maintaining quality for inference.

1https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl
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Chapter 7: Conclusion

In this thesis, I presented three methods to generate images with some corre-

spondence to provided music. Each of these rely on the assumption that images and

music both share overlapping semantic information–whether this be emotion, mood,

style, or some other unknowable overlap. Music and images are typically found juxta-

posed together in movies, music videos, album artwork, and in many other contexts.

Music provides context in movies, to telegraph how we should feel about a character

or foreshadow impending doom for the hero. Music videos provide images to add

context to the music, or expand the creative reach of both artists and musicians.

Album artwork can telegraph information such as a musician’s style, the genre of the

music, or even what the album is about. In each of these cases, music and images are

used to strengthen the impact of the other.

The main contributions of this work are

• Described and analyzed the Lyric2Prompt task which extracts information from

lyrics to synthesize a related image prompt for an image generation model.

• Introduced the Music2Prompt task which modifies the music captioning task

to generate text which describes related imagery to accompany the provided

music.

• Introduced the Music2Image task which seeks to produce images directly from

music-text pairs by fine-tuning a Stable Diffusion image model on musical in-

puts.

In chapter 4, I described a method to generate prompts from lyrics using

a multi-turn LLM approach. This method is currently available for interaction at

https://app.vibevideo.ai. This approach leverages the large-scale training and
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knowledge of LLM to extract information about a song from the lyrics. The key

assumption to this approach is that lyrics contain similar semantic information to

the associated music. While this method enjoys strong results and is largely model-

agnostic, there are several limitations which motivate the other two methods presented

in this thesis. The primary limitation, of course, is not all music contains lyrics. In

the case of instrumental music, there is no information to provide to the LLM. This is

mitigated somewhat with the inclusion of MusicCaps (Doh et al., 2023) in the process,

but the approach is highly lyric dependent.

To mitigate these issues, I present a method which generates prompts directly

from musical inputs in chapter 5. This method is inspired from other audio captioning

approaches, most notably LP-MusicCaps. Rather than produce captions which de-

scribe the music, the Music2Prompt method generates an image caption given music.

This addresses the dependence on lyrics from the previous approach by circumventing

the LLM interaction altogether. While the approach produces reasonable captions,

it tends to repeat many ideas which may be common to the training set. Moreover,

tracking correspondence between the prompts and source music is difficult as the

caption does not directly relate to the music, but ideally relates to an image which

should accompany the music.

Finally, in chapter 6, I study conditioning image generation models on audio

embeddings derived from music. Rather than deriving information from LLM inter-

actions or generating intermediate prompts, this approach seeks to directly generate

images given input music. Overall, this approach is the weakest of the three, as seen

in the results and images provided by the model. Despite the shortcomings, this

model is, to my knowledge, the first model which generates images conditioned on

musical inputs. While there remains a large gap in the performance of this approach,

it is a first step to conditioning image generation on modalities other than text.

This work can be improved by future work in several ways. A major theme

throughout this work is the limitations imposed by music data. Future work could
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address this by expanding both the quality and variety of music data used by model.

Much of the data used in this thesis is pulled from YouTube and varies in terms of

resolutions, audio fidelity, and content. While significant effort when in to filtering the

datasets, several low-quality data pairs are likely present, which can affect training.

In terms of variety, other music-image pairs can be found in album-art, social media

posts, and music used paired with film. Moreover, while synthetic data was exclusively

used in this work, the introduction of a high-quality data set for fine-tuning the model

after training on synthetic data could likely improve the performance of each model.

More work is needed in cross modal retrieval between music and other modal-

ities. LAION has released a variant of CLAP (Wu et al., 2023b) trained solely on

music, which has been used throughout this paper. However, the corresponding pub-

lished paper only describes the original version of the model, which was trained on

mostly on speech and general audio. Thorough analysis on the CLAP music variant

could perhaps elucidate problems with the models produced here. Cross modality

retrieval between music and images is also in need of greater study. I attempted to

create such a model as part of the thesis with little success. Other approaches for

cross modal retrieval between images and music do not publish their models and are

difficult to replicate. A major limitation of my work is the lack of a reliable measure

between music and image correspondence.
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Appendix A: Dataset Examples

• Predicted Caption: A cartoon figure sits in a cluttered room, strumming an

acoustic drum set and plucking an e-bass, surrounded by scattered chairs and

a footrest. In the background, a male singer emerges from the shadows, belting

out melodies with added reverb and delay.

• BLIP2 Inferences: The image depicts a cartoon drawing of a man sitting on

a chair, with his feet resting on the floor. There are multiple objects in the

foreground and background, including an armchair, two chairs, one footrest,

and more.

Yes, this image has a cartoon style.

a cartoon drawing of a person sitting in a chair

• MusicCaps Inferences: This song contains someone playing acoustic drums

along with an e-bass. They both sound in the foreground. A male voice is

singing in the high mids and with reverb and a little delay on his voice. Then

the song breaks into the next part and an even higher pitch. This song may be

playing as a live concert.
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• Predicted Captions: Anime woman pondering over a mystical object beneath

a vibrant night sky filled with twinkling stars and surrounding trees.

• BLIP2 Inferences: The image features a woman standing in front of the

night sky, gazing up at the stars. She is wearing a dark green dress with long

black hair and holding a star-shaped pendant hanging from her neck. There

are several other objects scattered across the scene, such as two trees located

to the left and one tree on the right.

The image depicts a woman in an anime-style outfit, which is common for this

type of artwork. This style may be due to the use of bright colors and stylized

characters that are typically found in animated movies or TV shows.

the girl is looking at something

• MusicCaps Inferences: This is a hardcore hip-hop music piece. There is a

male vocal rapping in the lead. The melody in the beat is being played by the

keyboard while the bass guitar is playing in the background. The rhythm is

provided by a loud electronic drum beat. The atmosphere is aggressive. This

piece could be used in the soundtrack of a crime movie or a TV series that takes

place in Hungary.

52



• Predicted Caption: A man’s face encircled by a whirl of vibrant colors. Pop

art abstraction.

• BLIP2 Inferences: The artwork features a colorful, abstract image of a man’s

face in the middle of a swirling background. There are several objects visible

on the left and right sides of the picture, including two people standing next to

each other as well as an object that appears to be behind them.

The image depicts a colorful, abstract painting in the style of pop art. Pop art

is an artistic movement that emerged in the early 20th century and has become

increasingly popular over time due to its vibrant colors, expressive nature, and

ability to capture viewers’ attention. In this case, the use of multiple brightly

colored circles around the face adds visual interest while also contributing to

the overall creative feel of the artwork.

a colorful image of a man’s face

• MusicCaps Inference: This is an electronic dance music piece. It is an in-

strumental piece. There is an ambient synth playing the melody. The rhythmic

background consists of a slightly fast tempo electronic drum beat. The atmo-

sphere is trippy. This piece could be playing in the background at a dance

club.
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• Predicted Caption: A whimsical Sesame Street-inspired character, clutching

a cup amidst a scattered collection on a table.

• BLIP2 Inferences: the cartoon character is holding a cup in his hand. there

are multiple cups visible, including one on the floor and another near the chair.

The image depicts a cartoon character in the style of Sesame Street, an animated

children’s television series that has been running for more than 60 years. It

features a blue and white furry creature wearing a light blue shirt holding a cup

while sitting on a stool next to a table with other objects around it. There is no

specific theme or message conveyed by this image; however, some viewers may

interpret it as being humorous due to its comical nature.

a cartoon character is holding a cup

• MusicCaps Inference: The low quality recording features a DJ scratching a

hip hop song that consists of punchy kick and snare hits, shimmering hi hats,

groovy bass and synth lead melody. There are crowd cheering noises in the

background. It sounds energetic, aggressive and exciting.
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• Predicted Caption: A man in the shadows, surrounded by piled crates and

illuminated only by flickering streetlights.

• BLIP2 Inferences: The scene depicts a group of men standing in an alleyway,

with several objects scattered around the room. There are multiple pieces of

furniture and other items located throughout the area, including chairs, tables,

bookshelves, and more. In addition, there is a snake lying on top of one of the

stacks of boxes that can be seen from across the room.

The image depicts a man standing in the dark with other people around him,

which may suggest that it has a particular style or theme. For example, there is

a sense of mystery and suspense due to the dim lighting as well as the presence

of various objects such as books, boxes, furniture, etc. This could be indicative

of an action-packed scene from a crime thriller movie like "The Dark Knight

Rises."

a man is standing next to some boxes

• MusicCaps Inference: This pop song features a male voice singing the main

melody. This is accompanied by programmed percussion playing a simple beat.

The kick is played on every count. Hand claps are played at every alternate
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count. The bass plays the root notes of the chords. Synth chords are played in

the background. This song can be played at a club.
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Appendix B: Music2Prompt Examples

The following list comprises randomly sampled generations from the RoMERTa-

95M-AMV model. All generations were generated with a temperature setting of 1.0

• Cartoon characters gathered in a trio, two on the left and one on the right.

• Generate an abstract image with a dark background adorned with intricate red

line patterns, reminiscent of an R&B/pop scene with a masculine vocalist and

a melodic keyboard melody. Incorporate subtle shapes and textures into the

design, enhancing the sense of movement and depth.

• A young girl in purple clothes sits cross-legged before a sunlit window, gazing

thoughtfully at an unseen object. Bookshelves line the room, filled with colorful

volumes and trinkets. A small dog naps peacefully nearby.

• Anime-style woman with red hair and blue eyes, gazing directly at the viewer

against a vibrant, abstract backdrop, surrounded by geometric shapes and vi-

brant colors.

• Anime character in a chair, arms outstretched, wearing glasses and surrounded

by abandoned books.

• A whimsical scene of a cartoon character with blue hair and green eyes, dressed

in a yellow shirt, amidst a backdrop of vibrant colors and playful details.

• A hauntingly lit cartoon scene with numerous masked figures huddled together,

surrounded by looming monsters and ominous shadows amidst a backdrop of

chaotic darkness.

• A cartoon character soaring through the sky, surrounded by billowing clouds

and twinkling stars against a backdrop of twinkling stars. Create an image

reflecting this whimsical scene with vibrant colors and playful details.
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• A night sky filled with twinkling stars against a backdrop of absolute darkness.

• Generate an image of a futuristic scene with a dark backdrop illuminated by

vibrant neon lights. In the foreground, hear the sound of an electric guitar

melody playing in the background, accompanied by the rhythmic pulsing of

electronic drums and the rhythmic thump of a bass guitar. Incorporate elements

of

• A trippy urban scene with rap vocals and electronic drums. Create an image of

a minimalistic green background with the empowering phrase "you can".

• A cartoon girl with green hair gazes introspectively through a kitchen window

in an empty room, surrounded by scattered pots and pans, while two chairs and

a table add depth to this whimsical setting. The sun sets behind her, casting

warm hues upon the scene.

• A women dressed in casual attire sits in a shopping cart, observing her sur-

roundings. Two figures stand by, creating an intriguing urban scene.

• A whimsical scene of a woman balancing on a floating boat amidst a whimsical

underwater world.

• People dancing under vibrant red lights. A woman moves passionately in the

foreground, her silhouette illuminated against the backdrop of swaying compan-

ions.

• Anime-style cartoon character with yellow hair and blue eyes, gazing intently

at a mysterious object in a dimly lit room. Surroundings include two chairs, a

table, and scattered objects.
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Appendix C: Examples for MusCI models

Figure C.1: AMV examples
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Figure C.2: YT8m-MV examples
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