
Synthesis Synthesis - Using LLMs and program synthesis to

program synthesizers

Davin Lawrence
dl35588

April 27, 2023

1 Introduction

Recent years have witnessed an explosion in the
size of large language models (LLMs). As the size of
these models increases, surprising capabilities have
emerged. One such capability is the generation of
code in a variety of programming languages. These
approaches have affected the field of program syn-
thesis, achieving results that in many ways surpass
classic approaches. While these models have impres-
sive results, they typically are only able to achieve in
the most popular languages and in simple to inter-
mediate coding tasks. For example, AlphaCode (Li
et al. 2022) is able to achieve competitive results, but
is only fine-tuned using C++ and Python. Other
models, such as Codegen (Nijkamp et al. 2022) are
trained on a larger variety of languages, but do not
consider Functional languages, which have been in-
strumental in the field of program synthesis. To my
knowledge, no LLMs has been trained specifically on
less-popular, domain-specific languages.

In this paper, I explore the feasibility of Program
Synthesis using LLMs to Faust, a domain-specific lan-
guage for audio DSP (Faust Programming Language
2023). I train two models on a dataset of Faust pro-
grams and evaluate their performance on a set of
prompts. I also apply reinforcement learning to en-
courage the model to generate compile-ready code. I
find that the models are able to generate syntactically
correct Faust programs, but struggle to match the se-
mantics of the prompts. I also find that compilation
rates improve with reinforcement learning.

The final model weights for this project are avail-
able for download at https://huggingface.co/
dhuck/synthesis-synthesis and the code is
available for review at https://gitlab.com/
dhuck/synthesis-synthesis.

2 Dataset Creation

Faust is a domain specific language targeting au-
dio DSP. It is a functional language, with a general
syntax similar to C, though with a richer set of se-
mantics defined on the operators of the language. It
is designed to be compiled to a variety of targets, in-
cluding C++, LLVM, and WebAssembly. It can also
be embedded in other languages, such as C++, C,
and Python. It is designed and maintained by the
GRAME-CNCN Research Department and used pri-
marily for audio DSP education and research. An
example of Faust code peforming a fast fourier trans-
form can be found in Figure 1.

2.1 Collection and Cleaning

Over the course of February 20 - March 19, 2023, I
collected source code from GitHub using the GitHub
search API. I collected two different datasets–one
consisting of code using so-called functional lan-
guages (i.e. Haskell, Lisp, Racket, Scheme, Clo-
jure, etc), and a second of only Faust code. The
GitHub API imposes rather strict rate and result lim-
its, which severely limited the amount of data I was
able to collect. All told, I was able to collect roughly
780,000 examples of functional language code, and
approximately 4,400 examples of Faust Code.

Once collected, I cleaned the functional code to re-
move identifying data from comments. I used a sim-
ple regex to remove any lines that contained a URL
or email address. I further analyzed the data to re-
move any person’s name using the NER pipeline from
the spaCy package. I did not perform any cleaning
on the Faust code, except to remove Author Names
when the declare author statement was used. I
opted to not clean the Faust code as it would assist
in studying the amount of overfitting on the training

1

https://huggingface.co/dhuck/synthesis-synthesis
https://huggingface.co/dhuck/synthesis-synthesis
https://gitlab.com/dhuck/synthesis-synthesis
https://gitlab.com/dhuck/synthesis-synthesis


1 // Radix 2 FFT, decimation in time, real and imag parts interleaved
2
3 declare name "FFT"; // Faust Fourier Transform :-)
4 declare author "JOS";
5 declare license "STK-4.3";
6
7 import("stdfaust.lib");
8
9 N=32; // FFT size (power of 2)

10 // Number of frequency bins (including dc and SR/2) is N/2+1
11
12 No2 = N>>1;
13 signal = amp * cosine with {
14 cosine = select2(k==0,
15 select2(k==No2,
16 2.0*os.oscrc(f(k)), // 2x since negative-frequencies not displayed
17 1-1’:+˜*(-1) // Alternating sequence: 1, -1, 1, -1
18 ),
19 1.0); // make sure phase is zero (freq jumps around)
20 f(k) = float(k) * ma.SR / float(N); // only test FFT bin frequencies
21 k = hslider("[2] FFT Bin Number",N/4,0,No2,0.001) : int <: _,dpy : attach;
22 dpy = hbargraph("[3] Measured FFT Bin Number",0,No2);
23 amp = hslider("[4] Amplitude",0.1,0,1,0.001);
24 };
25
26 process = signal : dm.fft_spectral_level_demo(N) <: _,_;
27

Figure 1: Example of a Faust Program which performs a Fast Fourier Transform. To be a valid Faust
program, each code example must include a process block, which is the entry point for the program.
Moreover, every useful program includes the stdfaust.lib file.

set.

For both datasets, I performed deduplication by
instructing the GitHub API to only return results
that were not forks of other repositories. Before stor-
ing the code example in a database, I performed a
SHA256 hash of the entire code example. If the hash
already existed in the database, then I did not store
the example. Finally, I follow the example of Alpha-
Code (2022) to perform a second duplication check
ignoring whitespace, rehashing the example after re-
moving all whitespace. After these steps, I was left
with roughly 500,000 examples of functional code,
and 4,000 examples of Faust code.

3 Training and Model

Throughout the course of this project, I trained two
different models. The first was based on Salesforce
Research’s CodeGen model. (Nijkamp et al. 2022).
The second model is fine-tuned from Facebook’s In-
Coder model (Fried et al. 2022). Each model has it’s
own strengths and weaknesses, as discussed in the
following sections.

3.1 CodeGen based model

The CodeGen model is an autoregressive model
trained on the standard language objective, where
we seek to maximize the log probability of each to-
ken based on the previous token,expressed as:

N∑
i

P (xi | xi−1) (1)

where xi is the ith token in the sequence, and N is
the length of the document. The CodeGen model is
pre-trained on the the Pile (Gao et al. 2020) as a stan-
dard language model. It is then further pre-trained
on a subset of the BigQuery dataset, which consists of
code examples of C, C++, Java, JavaScript, Python,
and Go source code. Due to hardware constraints,
I was forced to use the 350 Million Parameter vari-
ant of this model. I chose this model as it was the
only publicly available model I could find that was
explicitly trained on both natural language as well
as further pre-trained on coding examples. I hoped
the pretraining of the model on the Pile would as-
sist it learning aspects of audio synthesis and DSP
design and implementation separate from the code
examples.

2



I first fine-tuned the CodeGen model on the ex-
amples of functional code to introduce different syn-
tactical structures of code to the model. After run-
ning over the functional dataset for 3 epochs, I then
fine-tuned the model on the Faust code dataset for
5 epochs. Initial examinations of the model’s out-
put showed that it struggled in predicting the syn-
tax of most code from the training set. This held
true for the functional pretrained model, as well as
the Faust Model. Furthermore, initial experiments of
Faust model displayed a high rate of returning verba-
tim code from the training set, which was apparent in
the comments of the generated code. Because of these
initial results, I decided to train a second model with-
out further analysis of the CodeGen model. I believe
these results are due to the small size of the CodeGen
model and small dataset size.

3.2 Causal-Masked Learning Objective

The second model I fine-tuned was Facebook’s In-
Coder model (Fried et al. 2022). This model uses
a causal-masking objective for training, as illustrated
in Figure 2. This approach removes entire spans from
the training document and appends them to the end
of the document. The model is then trained on the
standard language model objective of predicting the
next token. At inference time, a mask token is in-
serted into the document as well as the end of the
document. The model then completes the span at
the document, which can be stitched together before
being returned to the user. This approach is espe-
cially appealing since it loosely matches the sketch-
ing paradigm common in program synthesis.(Solar-
Lezama et al. 2006) Sketching provides a way for the
user to provide a partial program to the synthesis
engine, which creates a scaffold or structure for the
final program. Since this model had already been
pretrained on some examples of functional code, I
skipped pretraining on the functional code dataset I
had collected.

Stated formally, the InCoder model takes a doc-
ument, D, of N tokens. This document con-
sists of code and K spans, where K ≥ 1. Each
span, Sk = Dk

i:j , is replaced by a masking token
<MASK:k> and appended to the end of the document
as <MASK:k>Sk<EOM>. Considering the case where
K = 1, we have S = Di:j , the tokens to the left,
L = D0:i and the tokens to the right, R = Dj:N . The
model is then trained to maximize the log probability

of the masked document:

logP ([L,<MASK:0>, R,<MASK:0>, S,<EOM>]) (2)

I follow the InCoder paper in sampling the number
of masks per document from a Poisson distribution
with λ = 1, truncated on the range of [1, 256]. The
position and length of each span is sampled from a
uniform distribution over the document. If the spans
over lap with each other, exceed the length of the
document, or are otherwise invalid, I restart the sam-
pling process from the beginning. I further augment
the dataset by producing several sets of spans for each
document.

Since this model is considerably larger than the
CodeGen model, I trained at half precision with a
batch size of one. Furthermore, to ensure that train-
ing examples could fit on my GPU, I reduced the
maximum context length from the default value of
2048 to 960, and remove examples over this length
post masking and tokenization. The data is split
0.9/0.1 into training and validation data, the latter
of which is used to monitor the validation perplex-
ity. I trained the model for 8-10 epochs or until the
validation perplexity stopped decreasing. Addition-
ally, I trained several models with tempering (Dabre
and Fujita 2020) values of τ ∈ {0.2, 0.4, 0.6, .08, 1.0},
and selected the model with the lowest validation per-
plexity. As seen in figure 3, this was often the first or
second epoch, since the model tended to overfit after
the first epoch. I found that models with tempering
below 0.6 tended to not converge, with τ = 0.2 never
achieving a useful perplexity. I also found that mod-
els with τ = 1.0 tended to overfit the training data,
and thus I selected the model with τ = 0.8 as the
final model.

Across all models, I used the AdamW optimizer
with a learning rate of 1e−4 and β1 = 0.9, β2 = 0.98.
I used the ReduceLRonPlateau scheduler with a
patience of 10 and a factor of 0.5. I also used gradi-
ent clipping with a maximum norm of 1.0 to ensure
stability with training with half precision. I trained
all models on a single NVIDIA RTX 3090 Ti GPU.

3.3 Reinforcement Learning on Compilation

Reinforcement Learning has been used in tandem
with LLMs to encourage models to respond in diverse
manners conditioned on some score. Often time, this
score is human preferences. (Ziegler et al. 2020) Since
I was not able to collect a sizeable amount of data on
human judgments, I use compilation as the reward

3



Figure 2: Example of the causal-masking objective with Python as the target language. On the right, the
highlighted tokens are removed from the document and appended to the end surrounded by the <MASK:n>
and <EOM> tokens. The model is then trained on the left side of the document to predict the tokens on the
right. Image source: InCoder paper (2022)

Figure 3: Training statistics for the InCode finetuning process. Training loss (left), Validation Loss (center)
and Validation Perplexity (right) are all shown for the first three epochs, represented by the red lines. While
the model was trained much longer, there is no discernible improvement in the validation loss or perplexity.
after the first epoch.

signal when applying reinforcement learning.

I take the model described in previous section and
compile 3,000 responses from a variety of prompts,
scoring successful compilations as 1 and unsuccess-
ful compilations as 0. I then train the model using
the PPO algorithm (2017) as described in Ziegler,
et al. using the TRL python package (Werra et al.
2020). This process adds a value network on top of
the Transformer and trains the model for 3 epochs
on the compilation data. As I was limited in time for
this portion of the project, I was unable to perform a
meaningful hyperparameter search, using the default
training parameters in the TRL package.

4 Evaluation

In this section, I will present the evaluation of the
causal-masked model described in the preceding sec-
tion. Since early results of the CodeGen model were
not promising, I did not perform deep evaluation
on the model. For all of the examples, I used nu-
cleus sampling (Holtzman et al. 2020) with p = 0.8
with temperature, τ = 0.4 at inference time. Be-
fore returning the output to the user, I perform sim-
ple heuristics to post-process the generated code, de-
scribed below.

Over the course of April 10 - April 25th, I asked the
Faust discord community to interact with the model.
As each prompt is entered into the model, I store
the prompt and the resulting code generation. I use
these prompts to generate additional data for evalua-

4



tion by providing them to the model as a background
process on my machine. In this way, I was able to
generate thousands of example prompts in relatively
short time.

4.1 Compilation

Quantitative evaluation of this model is difficult
for a number of reasons. First, the gathered dataset
is already quite small, and is difficult to properly di-
vide it into training and test sets. Moreover, a test set
would not provide the best metric, since similar prob-
lems could be solved in a number of ways. Second,
Faust is a transpiled language, converting Faust Code
to a target language (such as C++ or WASM) at
compilation time. Code snippets can be semantically
similar but syntactically different and still result in
the same output code in the target language. Third,
Faust also has no notion of testing as in other lan-
guages. Instead, the user is expected to listen to the
output of the program and determine if it is correct.
This makes it particularly difficult to quantitatively
evaluate the generated code.

Because of these reasons, the only purely quanti-
tative test I perform is a simple compilation check
on the examples. I test compilation in two different
ways. The first tests the raw output of the model.
The second tests if the output of the model compiles
after being run through a simple post-processing step.
This post-processing step removes extra tokens that
are generated after the process statement which
marks the end of a Faust program. This step also de-
tects if the output contains the standard faust library
import statement and adds it if missing.

I modify the pass@k benchmark (Chen et al. 2021)
to be compile@k. I check compilation for k =
1, 5, 10, 32 for each prompt. The results can be seen
in Table 1. Unsurprisingly, unsanitized code performs
worse than sanitized code for all values of k. Visual
inspection of generated code makes it evident why
this is the case. Unsanitized code often hallucinates
and fills the rest of the context with semi-random
tokens. Interestingly, RLHF improves the compile
rate for sanitized code across the board, in particular
for k = 1, but decreases performance for unsanitized
code. This is likely due to the fact that RLHF is
trained on sanitized code, and thus is better at gen-
erating sanitized code. Further tests could investigate
if the inverse is true.

Further analysis shows that the compilation rate is

Figure 4: Percentage of lines found in training set.
The x-axis represents the minimum line length to be
considered against the entire training and validation
sets.

heavily dependent on the prompt. I explore this in
more detail in Appendix A.

4.2 Training Data Memorization

I analyze the generated code to see how often it ap-
pears in the training set. This check is performed by
taking only the generated portions of each prompt
and searching for the generated code line by line
against the training set. I set a threshold, n, rep-
resenting the minimum line character length for a
line to be considered. This prevents short, generic
lines from being counted. I report the results for
n = 0, 2, 8, 16, 24, 32, 64 in figure 4.

The model finds surprisingly few lines in the train-
ing set. For small values of n, nearly 25% of the
generated code is found in the training set. How-
ever, this includes generic, one line statements such as
os.osc(440);, which is ubiquitous in Faust code.
While this particular response is heavily represented
in the response set, the percentage of lines found
drops rapidly as we consider longer lines of code. This
suggests that the model has indeed learned the syntax
of the Faust language, rather than simply memorizing
the training set. However, when considering shorter
examples, we see that the vocabulary of the model
is quite small. This is due to the small size of the
training set and the heavy use of libraries in Faust
code.

5



Output 1 5 10 32

Unsanitized 6.29% 20.28% 27.97% 50.00%
Sanitized 35.66% 78.32% 86.01% 92.75%
RLHF Unsanitized 2.04% 14.97% 24.49% 45.45%
RLHF Sanitized 42.86% 80.27% 90.48% 93.71%

Table 1: Compile@k benchmark for k = 1, 5, 10, 32 over 147 prompts

Considering only lines longer than 64 characters
found in the training set, roughly 56% of the found
lines are comments, where the entire comment is re-
peated verbatim. There are 29 unique comments and
all of them are over represented in the training set.
Typically they are headers for example or coursework
libraries. On the other hand, there are only 14 unique
code lines which are found in the training set.

4.3 Qualitative Analysis

For qualitative testing, I performed a user study on
the Faust discord server. I invited the users, which in-
cludes the core developer team of the Faust language,
to rate responses with a single thumbs up or thumbs
down. I also contribute to this evaluation by visually
inspecting the code and compiling it in the Faust on-
line IDE, listening to the output of the program, and
determining if the model has captured the semantics
of the prompt. I was able to gather 223 user responses
in total. Given a simple binary choice, 36.3% of the
rated code generations were rated as good, whereas
63.7% were rated as bad.

While this number is higher than I anticipated, I
must be clear that this is not a conclusive study. Only
a small fraction of the responses have been rated, and
my own rating are overrepresented in the responses.
Moreover, the responses are not evenly distributed
across the prompts. Some prompts have many re-
sponses, whereas others have only a few, or none.

5 Related Work

Program synthesis is a rich field with a long his-
tory in enumerative and inductive searches. Recent
advances in LLMs have allowed for the application
of neural networks to program synthesis. The most
known application of LLMs to program synthesis is
the Codex model (Chen et al. 2021), an autoregres-
sive model trained on code, used to power GitHub
Copilot. AlphaCode (Li et al. 2022) focuses on gen-

erating code for competitive programming problems.
While it relies on natural language descriptions of
code, it differs from my approach as it requires a
large number of tests and input-output examples to
generate code. LLMs have also be combined with
classic program synthesis methods to improve perfor-
mance as in (Balog et al. 2017), which uses a neural
network to search the program space before using a
SMT solver to search over parameter space. Given
more time, this could be an interesting approach to
explore for the Faust language, as the resultant audio
depends heavily on the parameters of the program.
Reinforcement learning has been used through hu-
man feedback (Ziegler et al. 2020) (Stiennon et al.
n.d.) to fine tune language models to match human
preferences, which is extended to program synthesis
via LLMs. Reinforcement learning has also been in
program synthesis to predict the reward over partial
programs on the path to generating a complete pro-
gram (Verma et al. 2019). Given the Faust’s compiler
API’s ability to analyze small snippets of code, this
could be an interesting approach to explore in future
work.

Neural audio synthesis studies how to apply neu-
ral networks to audio generation. The most popular
application of this field is speech synthesis (Tan et
al. 2021), but also has musical applications. DDSP
(Engel et al. 2020) creates a library of DSP tools
which combines deep learning methods with classic
signal processing approaches. Other approaches such
as World Models (Ha and Schmidhuber 2018) and
AudioLM (Borsos et al. 2022) take natural language
prompts and directly generate long form musical au-
dio. All of these approaches use deep learning tech-
niques to generate audio directly, whereas my ap-
proach uses deep learning to generate code which is
then compiled to audio generation or manipulation
tools.

6 Conclusion

In this work, I apply statistical program synthe-
sis to the task of audio synthesis. This is performed

6



by fine-tuning LLMs specifically trained on code ex-
amples to write Faust code, a DSL for audio DSP. I
find that the InCoder model does a fine job capturing
syntactical relationships of tokens, but only captures
the semantics of a prompt in a few cases. Moreover,
while the model does memorize some of the training
data, it does not rely on this memorization to gen-
erate code. Finally, initial experiments with RLHF
show that the model can be improved, as evinced by
the higher compilation rate after fine-tuning.

7 Acknowledgements and AI Disclo-
sure

I am deeply indebted to the Faust community for
helping me with my questions and for providing such
a great language to work with. Moreover, I am grate-
ful to the Faust discord for providing prompts and
rating responses for the evaluation. I would also
like to acknowledge Garret Gu, my classmate in CS
393P, for the original idea for this project. While
we went in different directions, the core idea of using
program synthesis to generate audio DSP originally
came from him. Code in this project written after
May 30th, 2023 was written with GitHub Copilot en-
abled. GitHub Copilot was also enabled when writ-
ing the text of this paper, which is why it is so good.
(This last clause was autogenerated by Copilot)

References

Balog, Matej et al. (Mar. 2017). DeepCoder: Learn-
ing to Write Programs. en. arXiv:1611.01989 [cs].
url: http://arxiv.org/abs/1611.01989
(visited on 02/24/2023).

Borsos, Zalán et al. (Sept. 2022). AudioLM: a Lan-
guage Modeling Approach to Audio Generation. en.
arXiv:2209.03143 [cs, eess]. url: http://arxiv.
org/abs/2209.03143 (visited on 02/24/2023).

Chen, Mark et al. (July 2021). Evaluating
Large Language Models Trained on Code. en.
arXiv:2107.03374 [cs]. url: http : / / arxiv .
org/abs/2107.03374 (visited on 03/28/2023).

Dabre, Raj and Atsushi Fujita (Sept. 2020). Softmax
Tempering for Training Neural Machine Transla-
tion Models. en. arXiv:2009.09372 [cs]. url: http:
//arxiv.org/abs/2009.09372 (visited on
02/24/2023).

Engel, Jesse et al. (Jan. 2020). DDSP: Differentiable
Digital Signal Processing. en. arXiv:2001.04643 [cs,

eess, stat]. url: http : / / arxiv . org / abs /
2001.04643 (visited on 02/24/2023).

Faust Programming Language (2023). url: https:
//faust.grame.fr/ (visited on 02/25/2023).

Fried, Daniel et al. (Apr. 2022). InCoder: A Gener-
ative Model for Code Infilling and Synthesis. en.
arXiv:2204.05999 [cs]. url: http : / / arxiv .
org/abs/2204.05999 (visited on 04/09/2023).

Gao, Leo et al. (Dec. 2020). The Pile: An 800GB
Dataset of Diverse Text for Language Modeling.
en. arXiv:2101.00027 [cs]. url: http://arxiv.
org/abs/2101.00027 (visited on 02/25/2023).

Ha, David and Jürgen Schmidhuber (Mar. 2018).
“World Models”. en. In: arXiv:1803.10122 [cs,
stat]. doi: 10.5281/zenodo.1207631. url:
http://arxiv.org/abs/1803.10122 (vis-
ited on 02/24/2023).

Holtzman, Ari et al. (Feb. 2020). The Curious Case
of Neural Text Degeneration. en. arXiv:1904.09751
[cs]. url: http://arxiv.org/abs/1904.
09751 (visited on 03/28/2023).

Li, Yujia et al. (Dec. 2022). “Competition-level
code generation with AlphaCode”. en. In: Science
378.6624, pp. 1092–1097. issn: 0036-8075, 1095-
9203. doi: 10.1126/science.abq1158. url:
https://www.science.org/doi/10.1126/
science.abq1158 (visited on 02/24/2023).

Nijkamp, Erik et al. (Sept. 2022). CodeGen: An Open
Large Language Model for Code with Multi-Turn
Program Synthesis. en. arXiv:2203.13474 [cs]. url:
http://arxiv.org/abs/2203.13474 (vis-
ited on 02/25/2023).

Schulman, John et al. (Aug. 2017). Proximal Pol-
icy Optimization Algorithms. en. arXiv:1707.06347
[cs]. url: http://arxiv.org/abs/1707.
06347 (visited on 02/24/2023).

Solar-Lezama, Armando et al. (2006). “Combinato-
rial Sketching for Finite Programs”. en. In.

Stiennon, Nisan et al. (n.d.). “Learning to summarize
from human feedback”. en. In: ().

Tan, Xu et al. (July 2021). A Survey on Neural
Speech Synthesis. en. arXiv:2106.15561 [cs, eess].
url: http://arxiv.org/abs/2106.15561
(visited on 04/27/2023).

Verma, Abhinav et al. (Apr. 2019). Programmat-
ically Interpretable Reinforcement Learning. en.
arXiv:1804.02477 [cs, stat]. url: http://arxiv.
org/abs/1804.02477 (visited on 02/24/2023).

Werra, Leandro von et al. (2020). TRL: Transformer
Reinforcement Learning. https : / / github .
com/lvwerra/trl.

Ziegler, Daniel M. et al. (Jan. 2020). Fine-Tuning
Language Models from Human Preferences. en.

7

http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/2209.03143
http://arxiv.org/abs/2209.03143
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2009.09372
http://arxiv.org/abs/2009.09372
http://arxiv.org/abs/2001.04643
http://arxiv.org/abs/2001.04643
https://faust.grame.fr/
https://faust.grame.fr/
http://arxiv.org/abs/2204.05999
http://arxiv.org/abs/2204.05999
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://doi.org/10.5281/zenodo.1207631
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://doi.org/10.1126/science.abq1158
https://www.science.org/doi/10.1126/science.abq1158
https://www.science.org/doi/10.1126/science.abq1158
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2106.15561
http://arxiv.org/abs/1804.02477
http://arxiv.org/abs/1804.02477
https://github.com/lvwerra/trl
https://github.com/lvwerra/trl


arXiv:1909.08593 [cs, stat]. url: http://arxiv.
org/abs/1909.08593 (visited on 03/03/2023).

Appendices

A Prompt Analysis

In this appendix, I perform a brief analysis of
prompts and their success rates. This only consid-
ers compilation rates as it is the only metric which is
available for all prompts. Furthermore, I only in-
clude prompt examples which have been compiled
more than 32 times to ensure that the results are
not skewed by a single response. The results can be
found in table 2. Overall, simple and well structured
prompts tend to perform better in terms of compi-
lation. In other words, prompts which provide some
structure to the model in the format of a sketched
program are more likely to compile and have syntac-
tically valid code. Most of these examples display an
improvement in compilation rates after sanitization
is performed on the model output.

Table 3 shows examples of code that never com-
piled without sanitization. Roughly 46% of the ex-
amples considered never had a single compilation in
> 32 attempts. From the small sample in the table,
these prompts tend to ask for complex DSP tasks of
the model. A few cases not present in the table also
provide typos in the sketch which prevent the code
from compiling, even if they generated text was valid.
This is a limitation of the current approach, as the
model is not able to correct for typos in the sketch,
though this could be improved by checking compila-
tion of prompts and masking out lines that return
errors from the compiler.

While this studies the compilation of code, this
does not consider the semantic validity of the gener-
ated code. While the model may generate code which
compiles, it was often the case that the code did not
perform the task described in the prompt. Failure
cases in varied, but typically followed a few patterns.
First, the model would often just insert process
= os.osc(440); as the answer when the prompts
were vague. In other cases, the model completely
misunderstands what part of the library does. For
example, many prompts may ask for overdrive or dis-
tortion. In many cases, the model generates code
which contains fi.dcblocker(), which has noth-

ing to do with distortion. This is due to the noisy
nature of the data and the small size of the dataset.
DC Blocker is often used in distortion effects, but it is
not a distortion effect itself. The third class of failure
rates is long chaining of effects. This is something
that happens in the dataset and in valid code, but
the model is not able to properly discern how this
should happen. For example, the model may gen-
erate code which links 12 filters, one after the other
when attempting to create a comb filter, but does not
vary the frequencies in the parameters, resulting in a
collapsible single filter.

Further work would be needed to address these
issues. A possible way forward would be to find
more valid faust code, and weight the examples in
the dataset by their quality. Furthermore, additional
comments describing individual blocks of code could
be helpful in guiding the model to generate more se-
mantically valid code. Finally, pre training on natu-
ral language audio synthesis and dsp descriptions, as
well as the Faust documentation could further guide
the model. However, I do not anticipate that these
approaches would lead to a large jump in code qual-
ity, outside of more examples of high quality Faust
code.

8

http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593


Prompt Compilation Rate Sanitized Rate

// synth with filter
import("stdfaust.lib");
freq = hslider("freq", 440, 20, 20000, 0.01);
gain = hslider("gain", 0.5, 0, 1, 0.01);
gate = button("gate");
cutoff = hslider("cutoff", 100, 50, 10000, 0.01);
envelope = gain*gate : si.smoo;
process = os.osc(freq)*envelope: ?? *gain;

75.00% 69.44%

// oscillator in a stereo output
??

67.31% 88.46%

// A simple oscillator with a lowpass filter
??
process = ??

66.67% 75.56%

// synth with Moog Ladder filter
import("stdfaust.lib");
freq = hslider("freq", 440, 20, 20000, 0.01);
gain = hslider("gain", 0.5, 0, 1, 0.01);
gate = button("gate");
cutoff = hslider("cutoff", 100, 50, 10000, 0.01);
envelope = gain*gate : si.smoo;
process = os.osc(freq)*envelope: ?? *gain;

59.62% 53.85%

// write an oscillator
??

55.00% 81.67%

// write a panner with a sqrt law
??

55.00% 60.00%

// write a sawtooth oscillator
??

46.67% 61.67%

// write a filtered noise going in a stereo output
??

44.44% 50.00%

// write a filtered noise going in a 4 channels output
??

38.89% 52.78%

// write a noise going in a reverb
??

36.11% 61.11%

Table 2: Top 10 prompts with unsanitized output by compilation rate

9



Prompt Compilation Rate Sanitized Rate

// a compressor with saturation controls
??

0.00% 11.54%

// reverb effect to the input signal with
// adjustable decay time and room size parameters

??
0.00% 5.00%

// a phaser effect to the input signal with
// adjustable frequency and depth parameters.

??
0.00% 13.89%

// pitch shifter effect by changing the
// playback rate of the input signal.

??
0.00% 22.22%

// a tremolo effect using a volume
//modulation source.

??
0.00% 15.38%

// make a kick drum using an envelope and
//highly resonant low pass filter

??
0.00% 11.11%

// a program that creates a flanging effect
// using a comb filter and a delay line.

??
0.00% 17.31%

// This program implements a simple sawtooth
// oscillator with adjustable frequency
// and amplitude parameters.

??
0.00% 55.56%

osc = ?? 0.00% 88.89%

// a stereo delay effect with adjustable
// delay time and feedback parameters.

??
0.00% 17.31%

Table 3: Examples of code which never compiles. Note the prompts have been modified to fit the provided
table. Any <tab>\\ should be considered a continuation of the previous line.

10


	Introduction
	Dataset Creation
	Collection and Cleaning

	Training and Model
	CodeGen based model
	Causal-Masked Learning Objective
	Reinforcement Learning on Compilation

	Evaluation
	Compilation
	Training Data Memorization
	Qualitative Analysis

	Related Work
	Conclusion
	Acknowledgements and AI Disclosure
	Appendices
	Prompt Analysis

